A novel scheme for the utilization of Cu slag flotation tailings in preparing internal electrolysis materials to degrade printing and dyeing wastewater

2021 ◽  
pp. 127537
Author(s):  
Qilin Zhai ◽  
Runqing Liu ◽  
Changtao Wang ◽  
Xiaofei Wen ◽  
Xiong Li ◽  
...  
2011 ◽  
Vol 415-417 ◽  
pp. 438-441
Author(s):  
Jin Xia Yan ◽  
Dong Fang Li ◽  
Shao Feng Dong

The printing and dyeing wastewater was treated by internal electrolysis method. The results show the chromaticity removal rate was up to 98.53 percent and COD removal rate 85.98 percent under the optimum conditions of wastewater pH 4, reaction time 30 minutes, the electric conductivity 1450μm/cm, the value BOD5/COD increases from 0.34 to 0.51. Moreover, the pH, Fe2+ concentration and absorbance of wastewater changed in the process, the mechanism of that was also analyzed.


2019 ◽  
Vol 118 ◽  
pp. 04009
Author(s):  
Yuan Li ◽  
Jie Liu ◽  
Yibiao Yu ◽  
Hao Zhu ◽  
Zheng Shen ◽  
...  

A more detailed occurrence features of organic matters in the printing and dyeing wastewater, based on its particle size distribution (PSD) and along with a wastewater treatment process, was conducted to provide a support for advanced treatment. Results suggested that, (1) In the dyeing wastewater, the occurrence characteristic of COD was: soluble>supra colloidal>colloidal>settleable; However, for protein, the supra colloidal was dominant, followed by the soluble. The feature of the polysaccharide was consistent with COD’s. In the wastewater, 29.66% of COD could be attributed to proteins and 3.45% of the COD could be attributed to polysaccharides. (2) The relationship among the forms of COD in the primary sedimentation tank, aerobic tank, secondary sedimentation tank, and reverse osmosis-treated concentrated effluent was consistent, that was: soluble>colloidal>supra colloidal>settleable. (3) In the primary sedimentation tank, the settleable COD was almost completely removed; In the aerobic tank, the residual super colloidal COD was not much; After MBR-RO treatment, the COD in the reverse osmosis concentrated water was almost dissolved and only a little presented in other forms.


2021 ◽  
Vol 261 ◽  
pp. 04005
Author(s):  
Emmanuel Nkudede ◽  
Husseini Sulemana ◽  
Bo Zhang ◽  
Kaida Zhu ◽  
Shan Hu ◽  
...  

Owing to its widespread and persistent usage, methylene blue (MB) is an environmental substance, mostly found in the printing and dyeing industry that raises concerns in the environment recently by posing significant threat to human life and the ecosystem as a whole. Thus, there is the need to effectively manage and treat the wastewater from these industries before reaching to the available water sources. Ozonation treatment is very efficient in treating printing and dyeing wastewater (MB) and can be greatly improved by using micro-bubble technology. Microbubble dissolution is an effective way to improve the rate of ozone mass transfer. To discover these properties, a method was used to improve the mass transfer of ozone microbubbles, which was used to effectively treat simulated printing and dyeing wastewater. We investigated the effects of pH, water temperature, ozone flow, and other conditions on the dissolution and attenuation properties of ozone in methylene blue microbubble solutions. Treatment of simulated printing and dyeing wastewater (methylene blue) was investigated under various initial pH and ozone flow rates. A catalytic exhibition was performed towards the decolorization of methylene blue (MB) concentrations and the corresponding COD removal efficiency. Ozone depletion and pH levels played key roles in MB degradation. Under high pH level of 11.01, the rate of removal of COD was 93.5%. Ozone dosage also has direct effect on COD removal efficiency and decolorization. Higher ozone flow rates, 0.4 L/min and 0.5 L/min recorded more than 94% degradation of COD thus very effective and efficient. Also, ozone flow rates 0.3 L/min, 0.4 L/min and 0.5 L/min with initial pH, 7.03, 6.63 and 6.36 decreased to 3.43, 3.49 and 3.44 after reaction processes which clearly shows that with high ozone dosage, pH reduces considerably.


2011 ◽  
Vol 356-360 ◽  
pp. 498-501
Author(s):  
Wen Jie Jin ◽  
Fan Chao Zeng ◽  
Han Xue ◽  
Ying Wang

A kind of new adsorption material for wastewater treatment was made of fly ash as the main composition, with addition of sodium silicate, cement and pore forming material as the accessory materials, etc. Three kinds of practical wastewater were treated by using the new material, they were printing and dyeing wastewater, papermaking wastewater and coking wastewater, respectively. The results showed that removal COD efficiencies of the three kinds of wastewater were 57.89%, 71.43%, 80%, respectively, removal color efficiencies were 90%, 92%, 92%, respectively. The new developed material was mainly used for advanced treatment of the effluent water after biochemical process. It will be a substitute for activated carbon materials and have preferable application prospect.


Author(s):  
Wenbo Dong ◽  
Yaoting Wu ◽  
Xiaoshuang Deng ◽  
Xiaoya Liang ◽  
Linghua Zhang ◽  
...  

Chemosphere ◽  
2008 ◽  
Vol 71 (1) ◽  
pp. 195-202 ◽  
Author(s):  
J. Wang ◽  
M.C. Long ◽  
Z.J. Zhang ◽  
L.N. Chi ◽  
X.L. Qiao ◽  
...  

2020 ◽  
Vol 20 (9) ◽  
pp. 5445-5451
Author(s):  
Yi-Xin Wang ◽  
Min-Nan Chen ◽  
Hong Tao

g-C3N4 and graphene oxide (GO) are simultaneously introduced into electrospun polyacrylonitrile (PAN) nanofibers to form a nested structure. By Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), g-C3N4 has been perfectly introduced into the PAN@GO nanofiber membrane and affects the porosity of the fiber itself. Comparison of nested electrospinning PAN/PAN@GO and different proportions of PAN@g-C3N4/PAN@GO nanofibers has a different effect on reducing the concentration and absorption of rhodamine B (RhB) dye in the visible region. Combined with the advantages of g-C3N4 and GO and the performance of fibers in the photocatalytic process, the optimal nested PAN@g-C3N4/PAN@GO nanofibers were selected. These results indicate that the nested PAN@g-C3N4/PAN@GO nanofibers with high photocatalytic activity have great potential in the treatment of printing and dyeing wastewater.


Sign in / Sign up

Export Citation Format

Share Document