plate curvature
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 55 (3) ◽  
Author(s):  
Lianyun Jiang ◽  
Yaoyu Wei ◽  
Zhenlei Li ◽  
Lifeng Ma

The flow field in the top and bottom surface of the hot rolled strip is different during cooling process with effect of gravity. Then it can affect the strip cooling uniformity of the top and bottom surface, and the plate curvature problems may be appeared. The finite element method was taken to study the plate curvature affecting law and a conclusion was obtained: the uniformity of the heat transfer coefficient in the top and bottom surface was the key to keep plate curvature well after rolling. The finite volume method was taken to calculate the heat transfer coefficient during run-out table laminar cooling (LC) and ultra-fast cooling (UFC) with different top nozzle fluxes and water flux ratios. The heat transfer coefficient and its distribution with different cooling methods and process parameters were obtained, and some conclusions were obtained by analysis: the bottom and top surface heat transfer coefficient can be kept nearly the same by adjusting water flux ratio between the bottom nozzle and top nozzle. The optimal water flux ratios of laminar cooling were 1.20 and 1.15 when top nozzle fluxes were 100m3/h and 120m3/h respectively. The optimal water flux ratios of ultra fast cooling were 1.08, 1.10, 1.15, 1.20 and 1.20 when top nozzle fluxes were 80m3/h, 100m3/h, 120m3/h, 140m3/h and 160m3/h respectively. The obtained results and water flux ratio calculating model were used in several strip cooling lines of the hot strip mill lines and obtained favorable effect.


2021 ◽  
Vol 118 (2) ◽  
pp. 205
Author(s):  
Lian-Yun Jiang ◽  
Jin-Bo Huang ◽  
Tao Zhen ◽  
Yao-Yu Wei ◽  
Zhen-Lei Li

The snake rolling can keep the plate shape well, and the larger shear strain produced by the snake rolling is conducive to the deformation penetrating into the center of the heavy plate. So it provides a new method for producing the high-performance heavy steel plate. However, there is little research on the plate curvature modeling which is the key to achieve the snake rolling process. The deformation region was divided into four different zones at most which was depended on the positions of the two neutral points, and this number could be dropped to three or two in some other conditions. It was divided into three different cases according to the neutral point position: I, II, III and IV; I, II and IV; II and IV. The unit pressure and the accumulated shear strain deviation between the top and bottom portions of the plate with every case were established, and the plate curvature caused by shear strain was calculated on this basis. The plate curvature caused by the axial strain was also calculated according to the flow criterion. The approximations are corrected by a fitting coefficient E. The homogeneity coefficient E was introduced during the plate curvature modeling process to make the model more accurate. Then the total plate curvature model was established. The simulation of snake rolling process is carried out by using ANSYS LS-DYNA, and the plate curvature results are compared with the theoretical method. The results showed that the maximum and minimum relative error of the model was 11.61% and 0.28% compared to the simulation method, which can be applied for the online plate curvature control application with the effect of some self-learning methods. The plate curvature affecting law with the different process parameters (roll offset, roll speed ratio, rolling reduction, plate thickness and so on) was obtained in this paper. The research about the plate curvature modeling will provide important references for the heavy steel plate snake rolling production.


Author(s):  
C. S. Florio

Abstract Much work has been done to create and understand means to control the propagation of acoustic and light waves through materials and structures. The ability to perform similar studies on the control of stress waves has implications not only for the development of capabilities to disrupt stress waves in order to limit their damage, but also to direct stress waves in order to tailor the behavior of a structure for a specific functional goal. Recent studies have demonstrated the use of voids and inclusions of varying size, geometry, arrangement, and composition in structures to attenuate impact forces or cloak stress waves in thin, flat, plane stress plates. However, many structures that may benefit from these wave modification methods are comprised of cylindrical shells. It is not currently known how well the techniques to control wave propagation and trends identified in plane stress plates can be applied to structures with cylindrical shells. Therefore, this study develops and uses computational modeling methods to examine the modification and control of stress waves induced by an axial impact load in metal plates of varying curvature through the inclusion of macroscale voids. Methods are developed and used in this work to study the response of metal plates of varying curvature with and without voids of different shapes and arrangement to axial impact loads. The response is quantified through the magnitude of the fixed end reaction force and through normal oscillations of discrete points along the length of the plate. Fast Fourier transformation and wavelet coherence techniques are used to understand both the time-averaged and time-dependent oscillation behavior. Correlations are drawn between plate curvature and void design on the control of the propagation of stress waves. The knowledge gained can help guide the understanding design of these stress wave modification features.


2020 ◽  
Vol 10 (7) ◽  
pp. 2304
Author(s):  
Lichun Chang ◽  
Yao Zhao ◽  
Hua Yuan ◽  
Xiaocai Hu ◽  
Zhen Yang ◽  
...  

Line heating is an essential process in the formation of ship hull plates with a complex curvature. Electromagnetic induction heating is widely used in the line heating process. In electromagnetic induction heating, the shape of the coil and the air gap between the inductor and workpiece could influence the heat source distribution. Moreover, in the line heating process, the change of curvature of the plate will cause a change of the air gap of the inductor. Magnetic thermal coupling calculation is an effective method for simulating induction heating. This paper used the finite element method to calculate the distribution of heat sources in different initial plate curvatures and coil widths. The changes in heat source distribution and its laws were investigated. The results show that when the coil width is less than 100 mm, the effect of plate curvature on heat source distribution and strain distribution is not apparent; when the coil width is greater than 100 mm, the plate curvature has a visible effect on the heat generation distribution. In the case of a curvature increasing from 0 to 1 and a coil width equal to 220 mm, the Joule heat generation in the center of the heating area is reduced by up to 21%.


2019 ◽  
Author(s):  
Hakan Ozaltun ◽  
Hee Seok Roh ◽  
Walid Mohamed

Abstract Monolithic fuel is a candidate fuel form being considered for the conversion of high-performance research reactors. This plate-type fuel consists of a high-density, U-Mo fuel in a monolithic form that is sandwiched between zirconium diffusion barriers, and encapsulated in an aluminum cladding. To date, large number of plates have been irradiated with satisfactory performance. The program is now moving into the qualification phase, a predecessor to the timely conversion of the target reactors. Since each reactor employs distinct fuel plate geometries for various consideration, resulting nearly 50 distinct plate geometries with unique plate design features, a single “generic” plate geometry capturing all of the extremities is not achievable. This limitation consequently requires much more cautious performance evaluations, as thermal and mechanical response of a plate with certain geometry may not be representative for a plate with a different geometry. To evaluate the performance of the plates for various geometric parameters, parametric sensitives studies have been employed. One of the important geometric parameters may have potential effects on the performance is the plate curvature. In this study, curved-plates were parametrically simulated to investigate if this geometric parameter has any effects on overall performance, In particular, radius of curvatures of the plates were varied between the bounding values, and the plates were simulated for comparable irradiation histories. The resulted temperature, deformation, stress-strain results were comparatively evaluated. The results have indicated that preferential deformations occur. This consequently caused shifting of plate centerline on curved plates. The magnitude of centerline shifts increased with increasing plate curvatures.


2018 ◽  
Vol 99 (3) ◽  
pp. 463-471
Author(s):  
Lakshmi Shireen Banu Veeredhi ◽  
N. V. Ramana Rao ◽  
Vasudeva Rao Veeredhi

2018 ◽  
Vol 845 ◽  
Author(s):  
Cory Medina ◽  
Chang-kwon Kang

This paper presents a novel analytical model that predicts the two-way coupled aeroelastic response of a linear elastic plate in axial potential flow, including the effects of plate curvature. The plate deforms in dynamic balance of the inertia, elastic, and aerodynamic forces. Analytical solutions are obtained by deriving the generalized aerodynamic force with respect to the beam eigenfunctions, which are expressed in a Chebyshev polynomial expansion. Exact expressions are derived for the generated lift, thrust and required input power. The derived solution agrees well with the results reported in the literature for plate flutter and flapping wings.


2015 ◽  
Vol 42 (10) ◽  
pp. 3802-3810 ◽  
Author(s):  
Adam F. Holt ◽  
Bruce A. Buffett ◽  
Thorsten W. Becker

Sign in / Sign up

Export Citation Format

Share Document