Modeling of three-dimensional beam nonlinear vibrations generalizing Hencky’s ideas

2022 ◽  
pp. 108128652110679
Author(s):  
Emilio Turco

In this contribution, a novel nonlinear micropolar beam model suitable for metamaterials design in a dynamics framework is presented and discussed. The beam model is formulated following a completely discrete approach and it is fully defined by its Lagrangian, i.e., by the kinetic energy and by the potential of conservative forces. Differently from Hencky’s seminal work, which considers only flexibility to compute the buckling load for rectilinear and planar Euler–Bernoulli beams, the proposed model is fully three-dimensional and considers both the extensional and shear deformability contributions to the strain energy and translational and rotational kinetic energy terms. After having introduced the model formulation, some simulations obtained with a numerical integration scheme are presented to show the capabilities of the proposed beam model.

2012 ◽  
Vol 49 (10) ◽  
pp. 1134-1146 ◽  
Author(s):  
Pio-Go Hsieh ◽  
Chang-Yu Ou ◽  
Chiang Shih

Previous studies have shown that installation of cross walls in deep excavations can reduce lateral wall deflection to a very small amount. To predict the lateral wall deflection for excavations with cross walls, it is necessary to perform a three-dimensional numerical analysis because the deflection behavior of the diaphragm wall with cross walls is by nature three dimensional. However for the analysis and design of excavations, two-dimensional plane strain analysis is mostly used in practice . For this reason, based on the deflection behavior of continuous beams and the superimposition principle, an equivalent beam model suitable for two-dimensional plane strain analysis was derived to predict lateral wall deflection for excavations with cross walls. Three excavation cases were employed to verify the proposed model. Case studies confirm the proposed equivalent beam model for excavations with cross walls installed from near the ground surface down to at least more than half the embedded depth of the diaphragm wall. For the case with a limited cross-wall depth, the proposed model yields a conservative predicted lateral wall deflection.


1995 ◽  
Vol 62 (4) ◽  
pp. 893-898 ◽  
Author(s):  
V. Bhatt ◽  
Jeff Koechling

We present an analysis of the rigid-body model for frictional three-dimensional impacts, which was originally studied by Routh. Using Coulomb’s law for friction, a set of differential equations describing the progress and outcome of the impact process for general bodies can be obtained. The differential equations induce a flow in the tangent velocity space for which the trajectories cannot be solved for in a closed form, and a numerical integration scheme is required. At the point of sticking, the numerical problem becomes ill-conditioned and we have to analyze the flow at the singularity to determine the rest of the process. A local analysis at the point of sticking provides enough information about the global nature of the flow to let us enumerate all the possible dynamic scenarios for the sliding behavior during impact. The friction coefficient, and the mass parameters at the point of contact, determine the particular sliding behavior that would occur for a given problem. Once the initial conditions are specified, the possible outcome of the impact can then be easily determined.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Paulo Alexander Jacobsen Jardim ◽  
Jan Tore Rein ◽  
Øystein Haveland ◽  
Thorstein R. Rykkje ◽  
Thomas J. Impelluso

A decline in oil-related revenues challenges Norway to focus on new types of offshore installations. Often, ship-mounted crane systems transfer cargo or crew onto offshore installations such as floating windmills. This project analyzes the motion of a ship induced by an onboard crane in operation using a new theoretical approach to dynamics: the moving frame method (MFM). The MFM draws upon Lie group theory and Cartan's moving frames. This, together with a compact notation from geometrical physics, makes it possible to extract the equations of motion, expeditiously. While others have applied aspects of these mathematical tools, the notation presented here brings these methods together; it is accessible, programmable, and simple. In the MFM, the notation for multibody dynamics and single body dynamics is the same; for two-dimensional (2D) and three-dimensional (3D), the same. Most importantly, this paper presents a restricted variation of the angular velocity to use in Hamilton's principle. This work accounts for the masses and geometry of all components, interactive motor couples and prepares for buoyancy forces and added mass. This research solves the equations numerically using a relatively simple numerical integration scheme. Then, the Cayley–Hamilton theorem and Rodriguez's formula reconstruct the rotation matrix for the ship. Furthermore, this work displays the rotating ship in 3D, viewable on mobile devices. This paper presents the results qualitatively as a 3D simulation. This research demonstrates that the MFM is suitable for the analysis of “smart ships,” as the next step in this work.


2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.


2021 ◽  
pp. 105678952110286
Author(s):  
H Zhang ◽  
J Woody Ju ◽  
WL Zhu ◽  
KY Yuan

In a recent companion paper, a three-dimensional isotropic elastic micromechanical framework was developed to predict the mechanical behaviors of the innovative asphalt patching materials reinforced with a high-toughness, low-viscosity nanomolecular resin, dicyclopentadiene (DCPD), under the splitting tension test (ASTM D6931). By taking advantage of the previously proposed isotropic elastic-damage framework and considering the plastic behaviors of asphalt mastic, a class of elasto-damage-plastic model, based on a continuum thermodynamic framework, is proposed within an initial elastic strain energy-based formulation to predict the behaviors of the innovative materials more accurately. Specifically, the governing damage evolution is characterized through the effective stress concept in conjunction with the hypothesis of strain equivalence; the plastic flow is introduced by means of an additive split of the stress tensor. Corresponding computational algorithms are implemented into three-dimensional finite elements numerical simulations, and the outcomes are systemically compared with suitably designed experimental results.


Algorithms ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 129
Author(s):  
Yuan Li ◽  
Ni Zhang ◽  
Yuejiao Gong ◽  
Wentao Mao ◽  
Shiguang Zhang

Compared with continuous elements, discontinuous elements advance in processing the discontinuity of physical variables at corner points and discretized models with complex boundaries. However, the computational accuracy of discontinuous elements is sensitive to the positions of element nodes. To reduce the side effect of the node position on the results, this paper proposes employing partially discontinuous elements to compute the time-domain boundary integral equation of 3D elastodynamics. Using the partially discontinuous element, the nodes located at the corner points will be shrunk into the element, whereas the nodes at the non-corner points remain unchanged. As such, a discrete model that is continuous on surfaces and discontinuous between adjacent surfaces can be generated. First, we present a numerical integration scheme of the partially discontinuous element. For the singular integral, an improved element subdivision method is proposed to reduce the side effect of the time step on the integral accuracy. Then, the effectiveness of the proposed method is verified by two numerical examples. Meanwhile, we study the influence of the positions of the nodes on the stability and accuracy of the computation results by cases. Finally, the recommended value range of the inward shrink ratio of the element nodes is provided.


Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


2002 ◽  
Vol 737 ◽  
Author(s):  
Theodore I. Kamins ◽  
Gilberto Medeiros-Ribeiro ◽  
Douglas A. A. Ohlberg ◽  
R. Stanley Williams

ABSTRACTWhen Ge is deposited epitaxially on Si, the strain energy from the lattice mismatch causes the Ge in layers thicker than about four monolayers to form distinctive, three-dimensional islands. The shape of the islands is determined by the energies of the surface facets, facet edges, and interfaces. When phosphorus is added during the deposition, the surface energies change, modifying the island shapes and sizes, as well as the deposition process. When phosphine is introduced to the germane/hydrogen ambient during Ge deposition, the deposition rate decreases because of competitive adsorption. The steady-state deposition rate is not reached for thin layers. The deposited, doped layers contain three different island shapes, as do undoped layers; however, the island size for each shape is smaller for the doped layers than for the corresponding undoped layers. The intermediate-size islands are the most significant; the intermediate-size doped islands are of the same family as the undoped, multifaceted “dome” structures, but are considerably smaller. The largest doped islands appear to be related to the defective “superdomes” discussed for undoped islands. The distribution between the different island shapes depends on the phosphine partial pressure. At higher partial pressures, the smaller structures are absent. Phosphorus appears to act as a mild surfactant, suppressing small islands.


Author(s):  
Javier Bonet ◽  
Antonio J. Gil

AbstractThis paper presents mathematical models of supersonic and intersonic crack propagation exhibiting Mach type of shock wave patterns that closely resemble the growing body of experimental and computational evidence reported in recent years. The models are developed in the form of weak discontinuous solutions of the equations of motion for isotropic linear elasticity in two dimensions. Instead of the classical second order elastodynamics equations in terms of the displacement field, equivalent first order equations in terms of the evolution of velocity and displacement gradient fields are used together with their associated jump conditions across solution discontinuities. The paper postulates supersonic and intersonic steady-state crack propagation solutions consisting of regions of constant deformation and velocity separated by pressure and shear shock waves converging at the crack tip and obtains the necessary requirements for their existence. It shows that such mathematical solutions exist for significant ranges of material properties both in plane stress and plane strain. Both mode I and mode II fracture configurations are considered. In line with the linear elasticity theory used, the solutions obtained satisfy exact energy conservation, which implies that strain energy in the unfractured material is converted in its entirety into kinetic energy as the crack propagates. This neglects dissipation phenomena both in the material and in the creation of the new crack surface. This leads to the conclusion that fast crack propagation beyond the classical limit of the Rayleigh wave speed is a phenomenon dominated by the transfer of strain energy into kinetic energy rather than by the transfer into surface energy, which is the basis of Griffiths theory.


2019 ◽  
Vol 14 ◽  
pp. 155892501988346 ◽  
Author(s):  
Fatih Daricik

The virtual crack closure technique is a well-known finite element–based numerical method used to simulate fractures and it suits well to both of two-dimensional and three-dimensional interlaminar fracture analysis. In particular, strain energy release rate during a three-dimensional interlaminar fracture of laminated composite materials can successfully be computed using the virtual crack closure technique. However, the element size of a numerical model is an important concern for the success of the computation. The virtual crack closure technique analysis with a finer mesh converges the numerical results to experimental ones although such a model may need excessive modeling and computing times. Since, the finer element size through a crack path causes oscillation of the stresses at the free ends of the model, the plies in the delaminated zone may overlap. To eliminate this problem, the element size for the virtual crack closure technique should be adjusted to ascertain converged yet not oscillating results with an admissible processing time. In this study, mesh size sensitivity of the virtual crack closure technique is widely investigated for mode I and mode II interlaminar fracture analyses of laminated composite material models by considering experimental force and displacement responses of the specimens. Optimum sizes of the finite elements are determined in terms of the force, the displacement, and the strain energy release rate distribution along the width of the model.


Sign in / Sign up

Export Citation Format

Share Document