plant tumor
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 2)

H-INDEX

15
(FIVE YEARS 0)

2020 ◽  
Vol 295 (34) ◽  
pp. 12290-12304
Author(s):  
Fuzhou Ye ◽  
Chao Wang ◽  
Qinqin Fu ◽  
Xin-Fu Yan ◽  
Sakshibeedu R. Bharath ◽  
...  

Agrobacterium tumefaciens infects various plants and causes crown gall diseases involving temporal expression of virulence factors. SghA is a newly identified virulence factor enzymatically releasing salicylic acid from its glucoside conjugate and controlling plant tumor development. Here, we report the structural basis of SghR, a LacI-type transcription factor highly conserved in Rhizobiaceae family, regulating the expression of SghA and involved in tumorigenesis. We identified and characterized the binding site of SghR on the promoter region of sghA and then determined the crystal structures of apo-SghR, SghR complexed with its operator DNA, and ligand sucrose, respectively. These results provide detailed insights into how SghR recognizes its cognate DNA and shed a mechanistic light on how sucrose attenuates the affinity of SghR with DNA to modulate the expression of SghA. Given the important role of SghR in mediating the signaling cross-talk during Agrobacterium infection, our results pave the way for structure-based inducer analog design, which has potential applications for agricultural industry.


2020 ◽  
Vol 477 (3) ◽  
pp. 615-628
Author(s):  
Armelle Vigouroux ◽  
Jeanne Doré ◽  
Loïc Marty ◽  
Magali Aumont-Nicaise ◽  
Pierre Legrand ◽  
...  

Agrobacterium tumefaciens pathogens use specific compounds denoted opines as nutrients in their plant tumor niche. These opines are produced by the host plant cells genetically modified by agrobacteria. They are imported into bacteria via solute-binding proteins (SBPs) in association with ATP-binding cassette transporters. The mannityl-opine family encompasses mannopine, mannopinic acid, agropine and agropinic acid. Structural and affinity data on mannopinic acid bound to SBPs are currently lacking while those of the three others mannityl opines are available. We investigated the molecular basis of two pathways for mannopinic acid uptake. MoaA was proposed as the specific SBP for mannopinic acid import in mannityl opines-assimilating agrobacteria, which was validated here using genetic studies and affinity measurements. We structurally characterized the mannopinic acid-binding mode of MoaA in two crystal forms at 2.05 and 1.57 Å resolution. We demonstrated that the non-specific SBP MotA, so far characterized as mannopine and Amadori compound importer, was also able to transport mannopinic acid. The structure of MotA bound to mannopinic acid at 2.2 Å resolution defines a different mannopinic acid-binding signature, similar to that of mannopine. Combining in vitro and in vivo approaches, this work allowed us to complete the characterization of the mannityl-opines assimilation pathways, highlighting the important role of two dual imports of agropinic and mannopinic acids. Our data shed new light on how the mannityl-opines contribute to the establishment of the ecological niche of agrobacteria from the early to the late stages of tumor development.


2018 ◽  
Vol 31 (8) ◽  
pp. 814-822 ◽  
Author(s):  
Thibault Meyer ◽  
Sébastien Renoud ◽  
Armelle Vigouroux ◽  
Aurélie Miomandre ◽  
Vincent Gaillard ◽  
...  

Regulatory factors are key components for the transition between different lifestyles to ensure rapid and appropriate gene expression upon perceiving environmental cues. Agrobacterium fabrum C58 (formerly called A. tumefaciens C58) has two contrasting lifestyles: it can interact with plants as either a rhizosphere inhabitant (rhizospheric lifestyle) or a pathogen that creates its own ecological niche in a plant tumor via its tumor-inducing plasmid (pathogenic lifestyle). Hydroxycinnamic acids are known to play an important role in the pathogenic lifestyle of Agrobacterium spp. but can be degraded in A. fabrum species. We investigated the molecular and ecological mechanisms involved in the regulation of A. fabrum species-specific genes responsible for hydroxycinnamic acid degradation. We characterized the effectors (feruloyl-CoA and p-coumaroyl-CoA) and the DNA targets of the MarR transcriptional repressor, which we named HcaR, which regulates hydroxycinnamic acid degradation. Using an hcaR-deleted strain, we further revealed that hydroxycinnamic acid degradation interfere with virulence gene expression. The HcaR deletion mutant shows a contrasting competitive colonization ability, being less abundant than the wild-type strain in tumors but more abundant in the rhizosphere. This supports the view that A. fabrum C58 HcaR regulation through ferulic and p-coumaric acid perception is important for the transition between lifestyles.


2009 ◽  
Vol 191 (14) ◽  
pp. 4656-4666 ◽  
Author(s):  
Shinji Yamamoto ◽  
Kazuya Kiyokawa ◽  
Katsuyuki Tanaka ◽  
Kazuki Moriguchi ◽  
Katsunori Suzuki

ABSTRACT Stability of plant tumor-inducing (Ti) plasmids differs among strains. A high level of stability prevents basic and applied studies including the development of useful strains. The nopaline type Ti plasmid pTiC58 significantly reduces the transconjugant efficiency for incoming incompatible plasmids relative to the other type, such as octopine-type plasmids. In this study we identified a region that increases the incompatibility and stability of the plasmid. This region was located on a 4.3-kbp segment about 38 kbp downstream of the replication locus, repABC. We named two open reading frames in the segment, ietA and ietS, both of which were essential for the high level of incompatibility and stability. Plasmid stabilization by ietAS was accomplished by a toxin-antitoxin (TA) mechanism, where IetS is the toxin and IetA is the antitoxin. A database search revealed that putative IetA and IetS proteins are highly similar to AAA-ATPases and subtilisin-like serine proteases, respectively. Amino acid substitution experiments in each of the highly conserved characteristic residues, in both putative enzymes, suggested that the protease activity is essential and that ATP binding activity is important for the operation of the TA system. The ietAS-containing repABC plasmids expelled Ti plasmids even in strains which were tolerant to conventional Ti-curing treatments.


2009 ◽  
Vol 191 (8) ◽  
pp. 2551-2560 ◽  
Author(s):  
Han Ming Gan ◽  
Larry Buckley ◽  
Ernő Szegedi ◽  
André O. Hudson ◽  
Michael A. Savka

ABSTRACT The stringent response is a mechanism by which bacteria adapt to environmental stresses and nutritional deficiencies through the synthesis and hydrolysis of (p)ppGpp by RelA/SpoT enzymes. Alphaproteobacteria and plants contain a single Rsh enzyme (named for RelA/SpoT homolog) that is bifunctional. Here we report the identification of a new species of bacteria belonging to the genus Novosphingobium and characterization of an rsh mutation in this plant tumor-associated isolate. Isolate Rr 2-17, from a grapevine crown gall tumor, is a member of the Novosphingobium genus that produces the N-acyl-homoserine lactone (AHL) quorum-sensing (QS) signals. A Tn5 mutant, Hx 699, deficient in AHL production was found to have an insertion in an rsh gene. The Rsh protein showed significant percent sequence identity to Rsh proteins of alphaproteobacteria. The Novosphingobium sp. rsh gene (rsh Nsp) complemented the multiple amino acid requirements of the Escherichia coli relA spoT double mutant by restoring the growth on selection media. Besides QS signal production, the rsh mutation also affects soluble polysaccharide production and cell aggregation. Genetic complementation of the Hx 699 mutant with the rsh Nsp gene restored these phenotypes. This is the first discovery of a functional rsh gene in a member of the Novosphingobium genus.


Gene ◽  
2000 ◽  
Vol 242 (1-2) ◽  
pp. 331-336 ◽  
Author(s):  
Katsunori Suzuki ◽  
Yoshiyuki Hattori ◽  
Misugi Uraji ◽  
Nobuyuki Ohta ◽  
Kumi Iwata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document