scholarly journals Structural basis of a novel repressor, SghR, controlling Agrobacterium infection by cross-talking to plants

2020 ◽  
Vol 295 (34) ◽  
pp. 12290-12304
Author(s):  
Fuzhou Ye ◽  
Chao Wang ◽  
Qinqin Fu ◽  
Xin-Fu Yan ◽  
Sakshibeedu R. Bharath ◽  
...  

Agrobacterium tumefaciens infects various plants and causes crown gall diseases involving temporal expression of virulence factors. SghA is a newly identified virulence factor enzymatically releasing salicylic acid from its glucoside conjugate and controlling plant tumor development. Here, we report the structural basis of SghR, a LacI-type transcription factor highly conserved in Rhizobiaceae family, regulating the expression of SghA and involved in tumorigenesis. We identified and characterized the binding site of SghR on the promoter region of sghA and then determined the crystal structures of apo-SghR, SghR complexed with its operator DNA, and ligand sucrose, respectively. These results provide detailed insights into how SghR recognizes its cognate DNA and shed a mechanistic light on how sucrose attenuates the affinity of SghR with DNA to modulate the expression of SghA. Given the important role of SghR in mediating the signaling cross-talk during Agrobacterium infection, our results pave the way for structure-based inducer analog design, which has potential applications for agricultural industry.

2019 ◽  
Vol 20 (10) ◽  
pp. 1081-1089
Author(s):  
Weiwei Ke ◽  
Zaiming Lu ◽  
Xiangxuan Zhao

Human NIN1/RPN12 binding protein 1 homolog (NOB1), an RNA binding protein, is expressed ubiquitously in normal tissues such as the lung, liver, and spleen. Its core physiological function is to regulate protease activities and participate in maintaining RNA metabolism and stability. NOB1 is overexpressed in a variety of cancers, including pancreatic cancer, non-small cell lung cancer, ovarian cancer, prostate carcinoma, osteosarcoma, papillary thyroid carcinoma, colorectal cancer, and glioma. Although existing data indicate that NOB1 overexpression is associated with cancer growth, invasion, and poor prognosis, the molecular mechanisms behind these effects and its exact roles remain unclear. Several studies have confirmed that NOB1 is clinically relevant in different cancers, and further research at the molecular level will help evaluate the role of NOB1 in tumors. NOB1 has become an attractive target in anticancer therapy because it is overexpressed in many cancers and mediates different stages of tumor development. Elucidating the role of NOB1 in different signaling pathways as a potential cancer treatment will provide new ideas for existing cancer treatment methods. This review summarizes the research progress made into NOB1 in cancer in the past decade; this information provides valuable clues and theoretical guidance for future anticancer therapy by targeting NOB1.


2018 ◽  
Author(s):  
Lorraine Tudor Car ◽  
Bhone Myint Kyaw ◽  
Josip Car

BACKGROUND Digital technology called Virtual Reality (VR) is increasingly employed in health professions’ education. Yet, based on the current evidence, its use is narrowed around a few most applications and disciplines. There is a lack of an overview that would capture the diversity of different VR applications in health professions’ education and inform its use and research. OBJECTIVE This narrative review aims to explore different potential applications of VR in health professions’ education. METHODS The narrative synthesis approach to literature review was used to analyse the existing evidence. RESULTS We outline the role of VR features such as immersion, interactivity and feedback and explain the role of VR devices. Based on the type and scope of educational content VR can represent space, individuals, objects, structures or their combination. Application of VR in medical education encompasses environmental, organ and micro level. Environmental VR focuses on training in relation to health professionals’ environment and human interactions. Organ VR educational content targets primarily human body anatomy; and micro VR microscopic structures at the level of cells, molecules and atoms. We examine how different VR features and health professional education areas match these three VR types. CONCLUSIONS We conclude by highlighting the gaps in the literature and providing suggestions for future research.


Author(s):  
Emily C. Whipple ◽  
Camille A. Favero ◽  
Neal F. Kassell

Abstract Introduction Intra-arterial (lA) delivery of therapeutic agents across the blood-brain barrier (BBB) is an evolving strategy which enables the distribution of high concentration therapeutics through a targeted vascular territory, while potentially limiting systemic toxicity. Studies have demonstrated lA methods to be safe and efficacious for a variety of therapeutics. However, further characterization of the clinical efficacy of lA therapy for the treatment of brain tumors and refinement of its potential applications are necessary. Methods We have reviewed the preclinical and clinical evidence supporting superselective intraarterial cerebral infusion (SSJACI) with BBB disruption for the treatment of brain tumors. In addition, we review ongoing clinical trials expanding the applicability and investigating the efficacy of lA therapy for the treatment of brain tumors. Results Trends in recent studies have embraced the use of SSIACI and less neurotoxic chemotherapies. The majority of trials continue to use mannitol as the preferred method of hyperosmolar BBB disruption. Recent preclinical and preliminary human investigations into the lA delivery of Bevacizumab have demonstrated its safety and efficacy as an anti-tumor agent both alone and in combination with chemotherapy. Conclusion lA drug delivery may significantly affect the way treatment are delivered to patients with brain tumors, and in particular GBM. With refinement and standardization of the techniques of lA drug delivery, improved drug selection and formulations, and the development of methods to minimize treatment-related neurological injury, lA therapy may offer significant benefits for the treatment of brain tumors.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 962
Author(s):  
Maciej Jerzy Bernacki ◽  
Anna Rusaczonek ◽  
Weronika Czarnocka ◽  
Stanisław Karpiński

Salicylic acid (SA) is well known hormonal molecule involved in cell death regulation. In response to a broad range of environmental factors (e.g., high light, UV, pathogens attack), plants accumulate SA, which participates in cell death induction and spread in some foliar cells. LESION SIMULATING DISEASE 1 (LSD1) is one of the best-known cell death regulators in Arabidopsis thaliana. The lsd1 mutant, lacking functional LSD1 protein, accumulates SA and is conditionally susceptible to many biotic and abiotic stresses. In order to get more insight into the role of LSD1-dependent regulation of SA accumulation during cell death, we crossed the lsd1 with the sid2 mutant, caring mutation in ISOCHORISMATE SYNTHASE 1(ICS1) gene and having deregulated SA synthesis, and with plants expressing the bacterial nahG gene and thus decomposing SA to catechol. In response to UV A+B irradiation, the lsd1 mutant exhibited clear cell death phenotype, which was reversed in lsd1/sid2 and lsd1/NahG plants. The expression of PR-genes and the H2O2 content in UV-treated lsd1 were significantly higher when compared with the wild type. In contrast, lsd1/sid2 and lsd1/NahG plants demonstrated comparability with the wild-type level of PR-genes expression and H2O2. Our results demonstrate that SA accumulation is crucial for triggering cell death in lsd1, while the reduction of excessive SA accumulation may lead to a greater tolerance toward abiotic stress.


2021 ◽  
Vol 22 (5) ◽  
pp. 2250
Author(s):  
Evita Athanasiou ◽  
Antonios N. Gargalionis ◽  
Fotini Boufidou ◽  
Athanassios Tsakris

The role of certain viruses in malignant brain tumor development remains controversial. Experimental data demonstrate that human herpesviruses (HHVs), particularly cytomegalovirus (CMV), Epstein–Barr virus (EBV) and human herpes virus 6 (HHV-6), are implicated in brain tumor pathology, although their direct role has not yet been proven. CMV is present in most gliomas and medulloblastomas and is known to facilitate oncomodulation and/or immunomodulation, thus promoting cancer cell proliferation, invasion, apoptosis, angiogenesis, and immunosuppression. EBV and HHV-6 have also been detected in brain tumors and high-grade gliomas, showing high rates of expression and an inflammatory potential. On the other hand, due to the neurotropic nature of HHVs, novel studies have highlighted the engagement of such viruses in the development of new immunotherapeutic approaches in the context of oncolytic viral treatment and vaccine-based strategies against brain tumors. This review provides a comprehensive evaluation of recent scientific data concerning the emerging dual role of HHVs in malignant brain pathology, either as potential causative agents or as immunotherapeutic tools in the fight against these devastating diseases.


Author(s):  
Lorenzo Lisuzzo ◽  
Giuseppe Cavallaro ◽  
Stefana Milioto ◽  
Giuseppe Lazzara

AbstractIn this work, we investigated the effects of the vacuum pumping on both the loading efficiencies and the release kinetics of halloysite nanotubes filled with drug molecules dissolved in ethanol. As model drugs, salicylic acid and sodium diclofenac were selected. For comparison, the loading of the drug molecules was conducted on platy kaolinite to explore the key role of the hollow tubular morphology on the filling mechanism of halloysite. The effects of the pressure conditions used in the loading protocol were interpreted and discussed on the basis of the thermodynamic results provided by Knudsen thermogravimetry, which demonstrated the ethanol confinement inside the halloysite cavity. Several techniques (TEM, FTIR spectroscopy, DLS and $$\zeta$$ ζ -potential experiments) were employed to characterize the drug filled nanoclays. Besides, release kinetics of the drugs were studied and interpreted according to the loading mechanism. This work represents a further step for the development of nanotubular carriers with tunable release feature based on the loading protocol and drug localization into the carrier. Graphic abstract The filling efficiency of halloysite nanotubes is enhanced by the reduction of the pressure conditions used in the loading protocol.


Sign in / Sign up

Export Citation Format

Share Document