boundary optimization
Recently Published Documents


TOTAL DOCUMENTS

55
(FIVE YEARS 22)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 14 (2) ◽  
pp. 587
Author(s):  
Hei Gao ◽  
Yubing Weng ◽  
Yutian Lu ◽  
Yan Du

The continuous improvement of international protection awareness has dramatically increased the number of protection organizations and promoted various reserve-naming methods. However, the existing global natural reserves have either fully or partially overlapped, thereby allowing the same region to hold various international titles, resulting in serious issues, which are especially manifested in the boundary delimitation process of natural reserves. Therefore, delimiting the titles of reserve borders will become an enormous challenge in protected-area governance worldwide. This study conducted an in-depth investigation of the technical methods for delineating the spatial boundaries of natural reserves. Taking Jiangshan Nature Reserve in China as the case object, the Candidate Area–Natural background–Heritage Resource–Construction (C-NHC) framework was constructed, and the boundaries of the new reserves were delineated. This study has changed the status quo of the spatial overlap of the reserve through the quantitative evaluation of the conflict patches and the triple optimization of the boundary of the reserve. The area of the new reserve is 150.524 km2, which is 6.682 km2 larger than the original one. The original reserves are all included within the scope of the new one. This study provides guidance and new insights into the boundary delineation of integrated nature reserves worldwide.


Author(s):  
Fei Shi ◽  
Xuena Cheng ◽  
Shuanglang Feng ◽  
Changqing Yang ◽  
Shengyong Diao ◽  
...  

Abstract Choroid thickness measured from optical coherence tomography (OCT) images has emerged as a vital metric in the management of retinal diseases such as high myopia. In this paper, we propose a novel group-wise context selection network (referred to as GCS-Net) to segment the choroid of either normal or high myopia eyes. To deal with the diverse choroid thickness and the variable shape of the pathological retina, GCS-Net adopts the group-wise channel dilation (GCD) module and the group-wise spatial dilation (GSD) module, which can automatically select group-wise multi-scale information under the guidance of channel attention or spatial attention, and enhance the consistency between the receptive field and the target area. Furthermore, a boundary optimization network with a new edge loss is incorporated to improve the resulting choroid boundary by deep supervision. Experimental results evaluated on a dataset composed of 1650 clinically obtained OCT B-scans show that the proposed GCS-Net can achieve a Dice similarity coefficient of 95.97±0.54%, which outperforms some state-of-the-art segmentation networks.


2021 ◽  
Vol 155 (14) ◽  
pp. 144106
Author(s):  
Jack Broad ◽  
Simon Preston ◽  
Richard J. Wheatley ◽  
Richard S. Graham

2021 ◽  
Vol 13 (12) ◽  
pp. 2406
Author(s):  
Jingxin Chang ◽  
Xianjun Gao ◽  
Yuanwei Yang ◽  
Nan Wang

Building boundary optimization is an essential post-process step for building extraction (by image classification). However, current boundary optimization methods through smoothing or line fitting principles are unable to optimize complex buildings. In response to this limitation, this paper proposes an object-oriented building contour optimization method via an improved generalized gradient vector flow (GGVF) snake model and based on the initial building contour results obtained by a classification method. First, to reduce interference from the adjacent non-building object, each building object is clipped via their extended minimum bounding rectangles (MBR). Second, an adaptive threshold Canny edge detection is applied to each building image to detect the edges, and the progressive probabilistic Hough transform (PPHT) is applied to the edge result to extract the line segments. For those cases with missing or wrong line segments in some edges, a hierarchical line segments reconstruction method is designed to obtain complete contour constraint segments. Third, accurate contour constraint segments for the GGVF snake model are designed to quickly find the target contour. With the help of the initial contour and constraint edge map for GGVF, a GGVF force field computation is executed, and the related optimization principle can be applied to complex buildings. Experimental results validate the robustness and effectiveness of the proposed method, whose contour optimization has higher accuracy and comprehensive value compared with that of the reference methods. This method can be used for effective post-processing to strengthen the accuracy of building extraction results.


2021 ◽  
Vol 69 (3) ◽  
pp. 73
Author(s):  
Gopinath Samanta ◽  
Tapan Dey ◽  
Biswajit Samanta ◽  
Suranjan Sinha

Optimal ore body boundary and production area geometry (Stope) are essential to maximize the profit from an underground mining project subject to inherent physical, geotechnical and geological constraints. Number of researches have been introduced for stope boundary optimization but true optimal solution in three dimensional spaces is still out of reach. This article proposed a computer programming based optimization model using mixed integer linear programming based algorithm that incorporate stope boundary optimization with varying cost of mining and selling price of the metal. An actual ore body model was taken as case study to implement the algorithm in real mining scenario. In validation study, it is observed that, by using proposed model, the profit can be increased by 10% - 15% as compared to the present stoping practice. Simulating the optimal stope boundary by changing the various cost and price parameters helps to opt the best possible option for a given mining scenario to make most realistic plan.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Arthur Carlton-Jones ◽  
Elizabeth J. Paul ◽  
William Dorland

Coil complexity is a critical consideration in stellarator design. The traditional two-step optimization approach, in which the plasma boundary is optimized for physics properties and the coils are subsequently optimized to be consistent with this boundary, can result in plasma shapes which cannot be produced with sufficiently simple coils. To address this challenge, we propose a method to incorporate considerations of coil complexity in the optimization of the plasma boundary. Coil complexity metrics are computed from the current potential solution obtained with the REGCOIL code (Landreman, Nucl. Fusion, vol. 57, 2017, 046003). While such metrics have previously been included in derivative-free fixed-boundary optimization (Drevlak et al., Nucl. Fusion, vol. 59, 2018, 016010), we compute the local sensitivity of these metrics with respect to perturbations of the plasma boundary using the shape gradient (Landreman & Paul, Nucl. Fusion, vol. 58, 2018, 076023). We extend REGCOIL to compute derivatives of these metrics with respect to parameters describing the plasma boundary. In keeping with previous research on winding surface optimization (Paul et al., Nucl. Fusion, vol. 58, 2018, 076015), the shape derivatives are computed with a discrete adjoint method. In contrast with the previous work, derivatives are computed with respect to the plasma surface parameters rather than the winding surface parameters. To further reduce the resolution required to compute the shape gradient, we present a more efficient representation of the plasma surface which uses a single Fourier series to describe the radial distance from a coordinate axis and a spectrally condensed poloidal angle. This representation is advantageous over the standard cylindrical representation used in the VMEC code (Hirshman & Whitson, Phys. Fluids, vol. 26, 1983, pp. 3553–3568), as it provides a uniquely defined poloidal angle, eliminating a null space in the optimization of the plasma surface. In comparison with previous spectral condensation methods (Hirshman & Breslau, Phys. Plasmas, vol. 5, 1998, p. 2664), the modified poloidal angle is obtained algebraically rather than through the solution of a nonlinear optimization problem. The resulting shape gradient highlights features of the plasma boundary that are consistent with simple coils and can be used to couple coil and fixed-boundary optimization.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
S. A. Henneberg ◽  
S. R. Hudson ◽  
D. Pfefferlé ◽  
P. Helander

Combined plasma–coil optimization approaches for designing stellarators are discussed and a new method for calculating free-boundary equilibria for multiregion relaxed magnetohydrodynmics (MRxMHD) is proposed. Four distinct categories of stellarator optimization, two of which are novel approaches, are the fixed-boundary optimization, the generalized fixed-boundary optimization, the quasi-free-boundary optimization, and the free-boundary (coil) optimization. These are described using the MRxMHD energy functional, the Biot–Savart integral, the coil-penalty functional and the virtual casing integral and their derivatives. The proposed free-boundary equilibrium calculation differs from existing methods in how the boundary-value problem is posed, and for the new approach it seems that there is not an associated energy minimization principle because a non-symmetric functional arises. We propose to solve the weak formulation of this problem using a spectral-Galerkin method, and this will reduce the free-boundary equilibrium calculation to something comparable to a fixed-boundary calculation. In our discussion of combined plasma–coil optimization algorithms, we emphasize the importance of the stability matrix.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Elizabeth J. Paul ◽  
Matt Landreman ◽  
Thomas Antonsen

Using recently developed adjoint methods for computing the shape derivatives of functions that depend on magnetohydrodynamic (MHD) equilibria (Antonsen et al., J. Plasma Phys., vol. 85, issue 2, 2019; Paul et al., J. Plasma Phys., vol. 86, issue 1, 2020), we present the first example of analytic gradient-based optimization of fixed-boundary stellarator equilibria. We take advantage of gradient information to optimize figures of merit of relevance for stellarator design, including the rotational transform, magnetic well and quasi-symmetry near the axis. With the application of the adjoint method, we reduce the number of equilibrium evaluations by the dimension of the optimization space ( ${\sim }50\text {--}500$ ) in comparison with a finite-difference gradient-based method. We discuss regularization objectives of relevance for fixed-boundary optimization, including a novel method that prevents self-intersection of the plasma boundary. We present several optimized equilibria, including a vacuum field with very low magnetic shear throughout the volume.


Sign in / Sign up

Export Citation Format

Share Document