cortical capillaries
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Gabriela C Olivera ◽  
Emily C Ross ◽  
Christiane Peuckert ◽  
Antonio Barragan

The cellular barriers of the central nervous system proficiently protect the brain parenchyma from infectious insults. Yet, the single-celled parasite Toxoplasma gondii commonly causes latent cerebral infection in humans and other vertebrates. Here, we addressed the role of the cerebral vasculature in the passage of T. gondii to the brain parenchyma. Shortly after inoculation in mice, parasites mainly localized to cortical capillaries, in preference over post-capillary venules, cortical arterioles or meningeal and choroidal vessels. Early invasion to the parenchyma (days 1-5) occurred in absence of a measurable increase in blood-brain barrier (BBB) permeability, perivascular leukocyte cuffs or hemorrhage. However, sparse focalized permeability elevations were detected adjacently to replicative parasite foci. Further, T. gondii triggered inflammatory responses in cortical microvessels and endothelium. Pro- and anti-inflammatory treatments of mice with LPS and hydrocortisone, respectively, impacted BBB permeability and parasite loads in the brain parenchyma. Finally, pharmacological inhibition or Cre/loxP conditional knockout of endothelial focal adhesion kinase (FAK), a BBB intercellular junction regulator, facilitated parasite translocation to the brain parenchyma. The data reveal that the initial passage of T. gondii to the central nervous system occurs principally across cortical capillaries. The integrity of the microvascular BBB restricts parasite transit, which conversely is exacerbated by the inflammatory response.


Glia ◽  
2021 ◽  
Author(s):  
Armani P. Del Franco ◽  
Pei‐Pei Chiang ◽  
Eric A. Newman

Author(s):  
V. O. Tumanskyi ◽  
Yu. M. Avramenko

The aim of the study was to determine microscopic, immunohistochemical, electron microscopic, morphometric parameters of capillaries in the cerebral cortex in deceased patients with type 2 diabetes mellitus (DM) in comparison with the conditional control group and the group of deceased patients with dyscirculatory ischemic encephalopathy. Materials and methods. Microscopic, immunohistochemical, electron microscopic and morphometric studies of the cerebral cortex capillaries were performed in 3 groups: group I – 20 deceased patients with type 2 DM, group II conditional control (CC) – 20 deceased patients without clinical morphological signs of DM and cerebrovascular pathology, group III – 20 patients with dyscirculatory ischemic encephalopathy (DIEP). Results. It was found that in type 2 DM, the capillaries in the cerebral cortex lose pericytes due to their apoptosis: the number of pericytes in the cortical capillaries in type 2 DM was statistically significantly lower by 57.14 % compared to CC group and 50.00 % lower compared to DIEP group, the level of caspase-3 expression in the cortical microvessels in type 2 DM was significantly higher by 230.85 % compared with CC group and 81.67 % higher than in DIEP group. According to electron microscopy in type 2 DM, apoptosis of pericytes and single endothelial cells in the cerebral cortex capillaries was determined as well as significant expansion of basement membranes with the accumulation of electron-dense amorphous material and collagen fibrils. According to the results of morphometry, the outer diameter of the cortical capillaries in type 2 DM group was 4.90 % significantly larger, the inner diameter was 9.78 % smaller and the walls were 66.62 % thicker (compared with CC group) due to the accumulation of PAS-positive substances of blood serum and fibrosis, confirmed by 22.96 % greater area of type IV collagen expression in the microvessel walls. Conclusions. The pathomorphological changes of microvessels identified in deceased patients with type 2 diabetes mellitus are signs of diabetic cerebral microangiopathy.


2021 ◽  
Vol 22 (8) ◽  
pp. 3869
Author(s):  
Yasuteru Inoue ◽  
Yukio Ando ◽  
Yohei Misumi ◽  
Mitsuharu Ueda

Cerebral amyloid angiopathy (CAA) is characterized by accumulation of amyloid β (Aβ) in walls of leptomeningeal vessels and cortical capillaries in the brain. The loss of integrity of these vessels caused by cerebrovascular Aβ deposits results in fragile vessels and lobar intracerebral hemorrhages. CAA also manifests with progressive cognitive impairment or transient focal neurological symptoms. Although development of therapeutics for CAA is urgently needed, the pathogenesis of CAA remains to be fully elucidated. In this review, we summarize the epidemiology, pathology, clinical and radiological features, and perspectives for future research directions in CAA therapeutics. Recent advances in mass spectrometric methodology combined with vascular isolation techniques have aided understanding of the cerebrovascular proteome. In this paper, we describe several potential key CAA-associated molecules that have been identified by proteomic analyses (apolipoprotein E, clusterin, SRPX1 (sushi repeat-containing protein X-linked 1), TIMP3 (tissue inhibitor of metalloproteinases 3), and HTRA1 (HtrA serine peptidase 1)), and their pivotal roles in Aβ cytotoxicity, Aβ fibril formation, and vessel wall remodeling. Understanding the interactions between cerebrovascular Aβ deposits and molecules that accumulate with Aβ may lead to discovery of effective CAA therapeutics and to the identification of biomarkers for early diagnosis.


2019 ◽  
Vol 1 (2) ◽  
pp. 236-250 ◽  
Author(s):  
Anika Grüneboom ◽  
Ibrahim Hawwari ◽  
Daniela Weidner ◽  
Stephan Culemann ◽  
Sylvia Müller ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Patrick Reeson ◽  
Kevin Choi ◽  
Craig E Brown

Cortical capillaries are prone to obstruction, which over time, could have a major impact on brain angioarchitecture and function. The mechanisms that govern the removal of these obstructions and what long-term fate awaits obstructed capillaries, remains a mystery. We estimate that ~0.12% of mouse cortical capillaries are obstructed each day (lasting >20 min), preferentially in superficial layers and lower order branches. Tracking natural or microsphere-induced obstructions revealed that 75–80% of capillaries recanalized within 24 hr. Remarkably, 30% of all obstructed capillaries were pruned by 21 days, including some that had regained flow. Pruning involved regression of endothelial cells, which was not compensated for by sprouting. Using this information, we predicted capillary loss with aging that closely matched experimental estimates. Genetic knockdown or inhibition of VEGF-R2 signaling was a critical factor in promoting capillary recanalization and minimizing subsequent pruning. Our studies reveal the incidence, mechanism and long-term outcome of capillary obstructions which can also explain age-related capillary rarefaction.


2015 ◽  
Vol 35 (4) ◽  
pp. 689-698 ◽  
Author(s):  
Miyuki Unekawa ◽  
Yutaka Tomita ◽  
Haruki Toriumi ◽  
Takashi Osada ◽  
Kazuto Masamoto ◽  
...  

Cortical spreading depression (CSD) involves mass depolarization of neurons and glial cells accompanied with changes in regional cerebral blood flow (rCBF) and energy metabolism. To further understand the mechanisms of CBF response, we examined the temporal diametric changes in pial arteries, pial veins, and cortical capillaries. In urethane-anesthetized mice, the diameters of these vessels were measured while simultaneously recording rCBF with a laser Doppler flowmeter. We observed a considerable increase in rCBF during depolarization in CSD induced by application of KCl, accompanied by a transient dip of rCBF with marked vasoconstriction of pial arteries, which resembled the response to pin-prick-induced CSD. Arterial constriction diminished or disappeared during the second and third passages of CSD, whereas the rCBF increase was maintained without a transient dip. Long-lasting oligemia with a decrease in the reciprocal of mean transit time of injected dye and mild constriction of pial arteries was observed after several passages of the CSD wave. These results indicate that CSD-induced rCBF changes consist of initial hyperemia with a transient dip and followed by a long-lasting oligemia, partially corresponding to the diametric changes of pial arteries, and further suggest that vessels other than pial arteries, such as intracortical vessels, are involved.


Sign in / Sign up

Export Citation Format

Share Document