scholarly journals Electrochemical Sensing and Removal of Cesium from Water Using Prussian Blue Nanoparticle-Modified Screen-Printed Electrodes

Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 253
Author(s):  
Prem. C. Pandey ◽  
Hari Prakash Yadav ◽  
Shubhangi Shukla ◽  
Roger J. Narayan

Selective screening followed by the sensing of cesium radionuclides from contaminated water is a challenging technical issue. In this study, the adsorption functionality of Prussian blue (PB) nanoparticles was utilized for the detection and efficient removal of cesium cations. An efficient PB nanoparticle-modified screen-printed electrode (SPE) in the three-electrode configuration was developed for the electrochemical sensing and removal of Cs+. PB nanoparticles inks were obtained using a facile two-step process that was previously described as suitable for dispensing over freshly prepared screen-printed electrodes. The PB nanoparticle-modified SPE induced a cesium adsorption-dependent chronoamperometric signal based on ion exchange as a function of cesium concentration. This ion exchange, which is reversible and rapid, is associated with electron transfer in the PB nanoparticle-modified SPE. Using this electrochemical adsorption system (EAS) based on chronoamperometry, the maximum adsorption capacity (Qmax) of Cs+ ions in the PB nanoparticle-modified SPE reached up to 325 ± 1 mg·g−1 in a 50 ± 0.5 μM Cs+ solution, with a distribution coefficient (Kd) of 580 ± 5 L·g−1 for Cs+ removal. The cesium concentration-dependent adsorption of PB nanoparticles was also demonstrated by fluorescence spectroscopy based on fluorescence quenching of PB nanoparticles as a function of cesium concentration using a standard fluorophore like fluorescein in a manner analogous to that previously reported for As(III).

2021 ◽  
Vol 5 (1) ◽  
pp. 59
Author(s):  
Cecilia Lete ◽  
Mariana Marin ◽  
Francisco Javier del Campo ◽  
Ioana Diaconu ◽  
Stelian Lupu

In this work, the characterization and the electro-analytical applications of antimony tin oxide (ATO)–Prussian blue (PB) screen printed electrodes (SPE) are presented. The ATO conducting particles have been used recently in the development of screen-printed electrodes due to their excellent spectroelectrochemical properties. PB is a transition metal hexacyanoferrate with high electrocatalytic properties towards various biologically active compounds like hydrogen peroxide, besides its outstanding electrochromic properties. A combination of ATO and PB ingredients into a screen-printing paste provided a versatile and cost-effective way in the development of novel electrode materials for electrochemical sensing. The ATO-PB electrode material displayed good electrochemical properties demonstrated by means of cyclic voltammetry and electrochemical impedance measurements. In addition, the PB provided a high selectivity towards potassium ions in solution due to its zeolitic structures and excellent redox behavior. The cyclic voltammetric responses recorded at the ATO-PB-SPE device in the presence of potassium ions revealed a linear dependence of the cathodic peak current and cathodic peak potential of the Prussian blue/Everitt’s salt redox system on the potassium concentrations ranging from 0.1 to 10 mM. This finding could be exploited in the development of an electrochemical sensor for electro-inactive chemical species. The potential application of the ATO-PB electrode in the electrochemical sensing of electro-active species like caffeic acid was also studied. An increase of the anodic peak current of the PB/ES redox wave in the presence of caffeic acid was observed. These results point out to the potential analytical applications of the ATO-PB electrode in the sensing of both electro-active and electro-inactive species.


2017 ◽  
Vol 806 ◽  
pp. 172-179 ◽  
Author(s):  
Filipe Soares da Cruz ◽  
Fernanda de Souza Paula ◽  
Diego Leoni Franco ◽  
Wallans Torres Pio dos Santos ◽  
Lucas Franco Ferreira

Sensors ◽  
2014 ◽  
Vol 14 (8) ◽  
pp. 14222-14234 ◽  
Author(s):  
Stefano Cinti ◽  
Fabiana Arduini ◽  
Danila Moscone ◽  
Giuseppe Palleschi ◽  
Anthony Killard

2021 ◽  
Vol 43 (5) ◽  
pp. 336-346
Author(s):  
Youngsu Lim ◽  
Dongwoo Kim ◽  
Jiseon Jang ◽  
Bolam Kim ◽  
Dae Sung Lee

Objectives: Among various radioactive contaminants, radioactive cesium is one of the most harmful radionuclides that causes human health issues due to its high emission of gamma-ray, high solubility, high mobility, high fission yield, and long half-life. Different kinds of adsorbents have been developed for the removal of cesium from radioactive wastewater. Especially, biochar has attracted great attention as a potential adsorbent in the treatment of pollutants and for water purification. In addition, Prussian blue is a cubic lattice structure that contains a cage size similar to the hydrated cesium ionic radius, indicating it can selectively remove cesium ions. Therefore, the aim of this study is to investigate the cesium adsorption performance of synthesized Prussian blue-immobilized coffee ground biochar (PB-CGBC) under various experimental conditions for cesium removal from radioactive wastewater.Methods: After wasted coffee ground was washed and dried, it was heated at 400℃ with 10℃/min of heating rate and 5 h of retention time in a furnace with little or no available air. The PB-CGBC was synthesized using a facile co-precipitation method. Fourier transform-infrared spectroscopy, X-ray diffractometer, field emission-transmission electron microscope, Brunauer-Emmett-Teller, and zeta potential analyzer were used to analyze physico-chemical characteristics and surface structure of the synthesized adsorbents. The kinetic and equilibrium experiments of cesium adsorption on PB-CGBC were carried out and the effect of pH, temperature, initial cesium concentration, and contact time were also investigated in a batch system.Results and Discussion: The characteristic analysis clearly confirmed the successful synthesis of PB-CGBC, indicating its abundant functional groups and special surface structure. In the batch study, it was found that the cesium adsorption onto the PB-CGBC was exothermic nature. The Elovich kinetic model and Temkin isotherm also provided a good correlation with the cesium adsorption reaction onto the PB-CGBC. The maximum adsorption capacity of PB-CGBC for cesium was 129.57 mg/g at 15℃ and pH 8 at 40 mM of an initial cesium concentration, which was one of the highest values among those of previously reported adsorbents.Conclusions: In this study, the PB-CGBC was synthesized by immobilizing Prussian blue to the surface of coffee ground biochar and successfully applied for the adsorptive removal of cesium ions. Based on the experimental results, the synthesized PB-CGBC can be served as a great adsorbent for treatment of wastewater polluted with radioactive cesium.


2013 ◽  
Vol 7 (5) ◽  
pp. 1002-1008 ◽  
Author(s):  
Donatella Albanese ◽  
Adriana Sannini ◽  
Francesca Malvano ◽  
Roberto Pilloton ◽  
Marisa Di Matteo

2014 ◽  
Vol 204 ◽  
pp. 414-420 ◽  
Author(s):  
Nadia Chandra Sekar ◽  
Seyed Ali Mousavi Shaegh ◽  
Sum Huan Ng ◽  
Liya Ge ◽  
Swee Ngin Tan

Sign in / Sign up

Export Citation Format

Share Document