cell cycle dependence
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 10)

H-INDEX

25
(FIVE YEARS 2)

2021 ◽  
pp. 114623
Author(s):  
Miguel A. Lasunción ◽  
Javier Martínez-Botas ◽  
Covadonga Martín-Sánchez ◽  
Rebeca Busto ◽  
Diego Gómez-Coronado

2020 ◽  
Vol 21 (23) ◽  
pp. 9166
Author(s):  
Shigeru Hanamata ◽  
Takamitsu Kurusu ◽  
Kazuyuki Kuchitsu

Autophagy is ubiquitous in eukaryotic cells and plays an essential role in stress adaptation and development by recycling nutrients and maintaining cellular homeostasis. However, the dynamics and regulatory mechanisms of autophagosome formation during the cell cycle in plant cells remain poorly elucidated. We here analyzed the number of autophagosomes during cell cycle progression in synchronized tobacco BY-2 cells expressing YFP-NtATG8a as a marker for the autophagosomes. Autophagosomes were abundant in the G2 and G1 phases of interphase, though they were much less abundant in the M and S phases. Autophagosomes drastically decreased during the G2/M transition, and the CDK inhibitor roscovitine inhibited the G2/M transition and the decrease in autophagosomes. Autophagosomes were rapidly increased by a proteasome inhibitor, MG-132. MG-132-induced autophagosome formation was also markedly lower in the M phases than during interphase. These results indicate that the activity of autophagosome formation is differently regulated at each cell cycle stage, which is strongly suppressed during mitosis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hyungjin Kim ◽  
Sho Watanabe ◽  
Mizuki Kitamatsu ◽  
Kazunori Watanabe ◽  
Takashi Ohtsuki

Abstract Investigation of the relevance between cell cycle status and the bioactivity of exogenously delivered biomacromolecules is hindered by their time-consuming cell internalization and the cytotoxicity of transfection methods. In this study, we addressed these problems by utilizing the photochemical internalization (PCI) method using a peptide/protein-photosensitizer conjugate, which enables immediate cytoplasmic internalization of the bioactive peptides/proteins in a light-dependent manner with low cytotoxicity. To identify the cell-cycle dependent apoptosis, a TatBim peptide-photosensitizer conjugate (TatBim-PS) with apoptotic activity was photo-dependently internalized into HeLa cells expressing a fluorescent ubiquitination-based cell cycle indicator (Fucci2). Upon irradiation, cytoplasmic TatBim-PS internalization exceeded 95% for all cells classified in the G1, S, and G2/M cell cycle phases with no significant differences between groups. TatBim-PS-mediated apoptosis was more efficiently triggered by photoirradiation in the G1/S transition than in the G1 and S/G2/M phases, suggesting high sensitivity of the former phase to Bim-induced apoptosis. Thus, the cell cycle dependence of Bim peptide-induced apoptosis was successfully investigated using Fucci2 indicator and the PCI method. Since PCI-mediated cytoplasmic internalization of peptides is rapid and does not span multiple cell cycle phases, the Fucci-PCI method constitutes a promising tool for analyzing the cell cycle dependence of peptides/protein functions.


2020 ◽  
Vol 34 (S1) ◽  
pp. 1-1
Author(s):  
Mehrnaz Ashley Siavoshi ◽  
Lindsey Le ◽  
Sorinna Buo ◽  
Paula Fischhaber

FEBS Journal ◽  
2020 ◽  
Vol 287 (20) ◽  
pp. 4427-4439 ◽  
Author(s):  
Alexander E. Vinogradov ◽  
Olga V. Anatskaya

2019 ◽  
Vol 39 (23) ◽  
Author(s):  
Fan Zou ◽  
Manyu Du ◽  
Hengye Chen ◽  
Lu Bai

ABSTRACT The MET3 promoter (MET3pr) inserted into the silenced chromosome in budding yeast can overcome Sir2-dependent silencing upon induction and activate transcription in every single cell among a population. Despite the fact that MET3pr is turned on in all the cells, its activity still shows very high cell-to-cell variability. To understand the nature of such “gene expression noise,” we followed the dynamics of the MET3pr-GFP expression inserted into ribosomal DNA (rDNA) using time-lapse microscopy. We found that the noisy “on” state is comprised of multiple substable states with discrete expression levels. These intermediate states stochastically transition between each other, with “up” transitions among different activated states occurring exclusively near the mitotic exit and “down” transitions occurring throughout the rest of the cell cycle. Such cell cycle dependence likely reflects the dynamic activity of the rDNA-specific RENT complex, as MET3pr-GFP expression in a telomeric locus does not have the same cell cycle dependence. The MET3pr-GFP expression in rDNA is highly correlated in mother and daughter cells after cell division, indicating that the silenced state in the mother cell is inherited in daughter cells. These states are disrupted by a brief repression and reset upon a second activation. Potential mechanisms behind these observations are further discussed.


2019 ◽  
Vol 218 (5) ◽  
pp. 1467-1477 ◽  
Author(s):  
Hanhui Ma ◽  
Li-Chun Tu ◽  
Yu-Chieh Chung ◽  
Ardalan Naseri ◽  
David Grunwald ◽  
...  

In contrast to the well-studied condensation and folding of chromosomes during mitosis, their dynamics during interphase are less understood. We deployed a CRISPR-based DNA imaging system to track the dynamics of genomic loci situated kilobases to megabases apart on a single chromosome. Two distinct modes of dynamics were resolved: local movements as well as ones that might reflect translational movements of the entire domain within the nucleoplasmic space. The magnitude of both of these modes of movements increased from early to late G1, whereas the translational movements were reduced in early S phase. The local fluctuations decreased slightly in early S and more markedly in mid-late S. These newly observed movements and their cell cycle dependence suggest the existence of a hitherto unrecognized compaction–relaxation dynamic of the interphase chromosome fiber, operating concurrently with changes in the extent of overall movements of loci in the 4D genome.


2019 ◽  
Vol 93 (9) ◽  
Author(s):  
Douglas K. Fischer ◽  
Akatsuki Saito ◽  
Christopher Kline ◽  
Romy Cohen ◽  
Simon C. Watkins ◽  
...  

ABSTRACTThe ability of human immunodeficiency virus type 1 (HIV-1) to transduce nondividing cells is key to infecting terminally differentiated macrophages, which can serve as a long-term reservoir of HIV-1 infection. The mutation N57A in the viral CA protein renders HIV-1 cell cycle dependent, allowing examination of HIV-1 infection of nondividing cells. Here, we show that the N57A mutation confers a postentry infectivity defect that significantly differs in magnitude between the common lab-adapted molecular clones HIV-1NL4-3(>10-fold) and HIV-1LAI(2- to 5-fold) in multiple human cell lines and primary CD4+T cells. Capsid permeabilization and reverse transcription are altered when N57A is incorporated into HIV-1NL4-3but not HIV-1LAI. The N57A infectivity defect is significantly exacerbated in both virus strains in the presence of cyclosporine (CsA), indicating that N57A infectivity is dependent upon CA interacting with host factor cyclophilin A (CypA). Adaptation of N57A HIV-1LAIselected for a second CA mutation, G94D, which rescued the N57A infectivity defect in HIV-1LAIbut not HIV-1NL4-3. The rescue of N57A by G94D in HIV-1LAIis abrogated by CsA treatment in some cell types, demonstrating that this rescue is CypA dependent. An examination of over 40,000 HIV-1 CA sequences revealed that the four amino acids that differ between HIV-1NL4-3and HIV-1LAICA are polymorphic, and the residues at these positions in the two strains are widely prevalent in clinical isolates. Overall, a few polymorphic amino acid differences between two closely related HIV-1 molecular clones affect the phenotype of capsid mutants in different cell types.IMPORTANCEThe specific mechanisms by which HIV-1 infects nondividing cells are unclear. A mutation in the HIV-1 capsid protein abolishes the ability of the virus to infect nondividing cells, serving as a tool to examine cell cycle dependence of HIV-1 infection. We have shown that two widely used HIV-1 molecular clones exhibit significantly different N57A infectivity phenotypes due to fewer than a handful of CA amino acid differences and that these clones are both represented in HIV-infected individuals. As such minor differences in closely related HIV-1 strains may impart significant infectivity differences, careful consideration should be given to drawing conclusions from one particular HIV-1 clone. This study highlights the potential for significant variation in results with the use of multiple strains and possible unanticipated effects of natural polymorphisms.


Sign in / Sign up

Export Citation Format

Share Document