scholarly journals Bearing capacity of damaged reinforced concrete beams strengthened with metal casing

2021 ◽  
Vol 61 (6) ◽  
pp. 703-721
Author(s):  
Irina Karpiuk ◽  
Denis Danilenko ◽  
Vasyl Karpiuk ◽  
Anna Danilenko ◽  
Tatiana Lyashenko

Experimental data on the bearing capacity of damaged reinforced concrete beams with the dimensions of 2000×200×100 mm, reinforced with prestressed metal casings, are presented. Damaging in the form of through normal and crossing inclined cracks, as well as excessive vertical moving of the beam were obtained during previous tests for the effect of high-level transverse alternating loads.The authors of the article have developed a method and equipment for restoring and strengthening damaged reinforced concrete beams using a casing. Beams are manufactured and tested in accordance with the three-level design of an experiment.Previously damaged and reduced to the ultimate (pre-emergency) state, the beams were strengthened with the declared method and equipment, and then retested. New data on the bearing capacity of ordinary and damaged beams, as well as reinforced concrete elements strengthened with casings and tested for the action of transverse forces and bending moments were obtained. The research results are presented in the form of experimental-statistical dependences of the bearing capacity of the support areas, deformability and crack resistance of the investigated elements on the ratio of the most significant design factors and external factors. A comparative analysis of the influence of these factors on the main parameters of the bearing capacity of ordinary as well as previously damaged and then strengthened test beams is carried out.The possibility and appropriateness of using the proposed method of strengthening reinforced concrete beams damaged by through normal and cross-inclined force cracks in the conditions of an existing production has been experimentally proved.

2016 ◽  
Vol 38 (2) ◽  
pp. 37-46 ◽  
Author(s):  
Mateusz Kaczmarek ◽  
Agnieszka Szymańska

Abstract Nonlinear structural mechanics should be taken into account in the practical design of reinforced concrete structures. Cracking is one of the major sources of nonlinearity. Description of deflection of reinforced concrete elements is a computational problem, mainly because of the difficulties in modelling the nonlinear stress-strain relationship of concrete and steel. In design practise, in accordance with technical rules (e.g., Eurocode 2), a simplified approach for reinforced concrete is used, but the results of simplified calculations differ from the results of experimental studies. Artificial neural network is a versatile modelling tool capable of making predictions of values that are difficult to obtain in numerical analysis. This paper describes the creation and operation of a neural network for making predictions of deflections of reinforced concrete beams at different load levels. In order to obtain a database of results, that is necessary for training and testing the neural network, a research on measurement of deflections in reinforced concrete beams was conducted by the authors in the Certified Research Laboratory of the Building Engineering Institute at Wrocław University of Science and Technology. The use of artificial neural networks is an innovation and an alternative to traditional methods of solving the problem of calculating the deflections of reinforced concrete elements. The results show the effectiveness of using artificial neural network for predicting the deflection of reinforced concrete beams, compared with the results of calculations conducted in accordance with Eurocode 2. The neural network model presented in this paper can acquire new data and be used for further analysis, with availability of more research results.


2011 ◽  
Vol 243-249 ◽  
pp. 929-933
Author(s):  
Na Ha ◽  
Lian Guang Wang ◽  
Shen Yuan Fu

In order to improve the bearing capacity of SRC which is related with deformation and stiffiness, SRC beams should be strengthened by CFRP. Based on the experiment of six pre-splitting steel reinforced concrete beams strengthened with (Prestressed) CFRP sheets, the deformation of beams are discussed. Load-deformation curves are obtained by the experiment. Considering the influence of intial bending moment on SRC beams, the calculated deformation formulas of SRC beams strengthened by (Prestressed) CFRP are deduced. The results showed that the load-deformation curves of normal and strengthened beams respectively showed three and two linear characteristics. The theoretical results which calculated by the formulas of deformation are well agreement with the experimental results.


2018 ◽  
Vol 931 ◽  
pp. 379-384
Author(s):  
Yuri V. Ivanov ◽  
Yuri F. Rogatnev ◽  
Igor I. Ushakov

The paper considers the results of the experimental study of the reinforced concrete beams strengthened by carbon fiber reinforced plastics (the CFRP). Eight reinforced concrete beams of the 80x160 mm section and 1500 mm designed span have been manufactured and tested. The influence of the number of the CFRP layers (strengthening power) on bearing capacity and rigidity under the static loading of beams in the thirds of the span has been studied. The results obtained indicate the increase in bearing capacity of the reinforced beams from 24% up to 55% and the increase in rigidity by 45% for the commonly adopted limiting state, i.e. achieving ultimate deformations in concrete of the compressed zone). The paper underlines the need for using anchor devices in the form of U-shaped binders to ensure the efficiency of the given method of strengthening.


2013 ◽  
Vol 577-578 ◽  
pp. 281-284 ◽  
Author(s):  
Oldrich Sucharda ◽  
Jiri Brozovsky ◽  
David Mikolášek

This paper discusses the fracture-plastic material models for reinforced concrete and use of this model for modelling of reinforced concrete beams. Load-displacement relations and bearing capacity of reinforced concrete beams will be evaluated. A series of original (own) experiments - the beam and data from completed experiments - have been chosen for the numerical modelling. In case of the original experiments - reinforced concrete beams, stochastic modelling based on LHS (Latin Hypercube Sampling) will be carried out in order to estimate the total bearing capacity. The software used for the fracture-plastic model for reinforced concrete is ATENA.


2010 ◽  
Vol 29-32 ◽  
pp. 1350-1356
Author(s):  
Qing Guo Yang ◽  
Yu Wei Zhang ◽  
Zhi Zhong Tu

Replacing the steel bar with GFRP (Glass Fiber Reinforced Plastics) bar can improve the durability of concrete structure in the corrosive environment. Different ratios of GFRP bar lead huge difference performance of GFRP reinforced concrete beams; therefore, to reduce the workload, it is very necessary to study GFRP reinforced concrete beams’ performance with suitable numerical calculation method. In the study, first, GFRP reinforced concrete beams’ mechanical behavior and failure characteristics were researched through the flexural experiments of GFRP reinforced concrete beams with different ratio of GFRP bar; Second, the numerical calculation model of GFRP reinforced concrete beams was built according to experimental results which contain the load-displacement curve and the phenomenon that concrete in compression zone are crushed, then the calculation criterion of obtaining the beam’s bearing capacity was proposed. Lastly, the bending bearing capacity of GFRP bar reinforced concrete beams with different ratio of GFRP is obtained through the finite element calculation, and the practical and simple calculation formula is acquired.


Author(s):  
Roman Kinasz ◽  
Andrii Mazurak ◽  
Ivan Kovalyk ◽  
Rostyslav Mazurak ◽  
Orest Tsap

2019 ◽  
Vol 14 ◽  
pp. 155892501984590 ◽  
Author(s):  
Shiping Yin ◽  
Yulin Yu ◽  
Mingwang Na

To study the reinforcement effect of textile-reinforced concrete (TRC) on concrete structures in a marine environment, a four-point bending loading method was used for graded loading to analyze the influence of the dry–wet cycle number, the reinforcement method, and chopped fiber addition on the flexural properties of load-holding reinforced concrete beams reinforced with textile-reinforced concrete. The results show that with the increase of dry–wet cycle numbers, the crack width and deflection of beams develop faster and the bearing capacity decreases. The performance of the prefabricated textile-reinforced concrete plate is close to that of a cast-in-place textile-reinforced concrete in limiting crack, bearing capacity, and deflection deformation. The addition of chopped fibers in fine-grained concrete can improve the reinforcement effect of textile-reinforced concrete. Based on the experimental results and referring to the relevant design codes and literature, the calculation formula of the bearing capacity of TRC-strengthened beam with a secondary load is established, and the calculated values are in good agreement with the actual values.


Author(s):  
Nazar Oukaili ◽  
Mohammed Khattab

For structural concrete members that may expose to serious earthquake, overload or accident impact, the design of ductility must be given the same importance as the flexural strength. The aim of this investigation is to study the change in ductility of structural concrete flexural members during their exposure to limited cycles of repeated loading. Twenty full-scale beam specimens have been fabricated in to two identical groups; each group consisted of ten specimens. The first group was tested under monotonic static loading to failure and regarded as control beams, while the specimens of the second group were subjected to ten cycles of repeated loading with constant load interval, which ranged between 40% and 60% of ultimate load. Specimens in each group were categorized as follows: two traditional reinforced concrete specimens with different intensity of tension reinforcement; three partially prestressed specimens with bonded strands; three partially prestressed specimens with unbonded strands; and two fully prestressed concrete specimens. The main variable, which was considered for all specimens was the partial prestressing ratio (PPR). It was observed that, the ductility of reinforced concrete beams was insignificantly increased during subjecting to limited repeated loading. For fully prestressed and partially prestressed concrete beams with high level of PPR, the ductility was significantly enhanced, while, it was decreased for specimens with small level of PPR.


Sign in / Sign up

Export Citation Format

Share Document