zonal section
Recently Published Documents


TOTAL DOCUMENTS

9
(FIVE YEARS 5)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 843 (1) ◽  
pp. 012057
Author(s):  
M V Kostin

Abstract The Republic of Kalmykia is the driest region in the south of the European part of Russia. The purpose of the study is to find a new approach to reforestation and breeding in the republic, which will ensure the increase in the survival rate of forest crops, and subsequently increase the forest cover of the region. The article analyzes data for a ten-year period in a zonal section on the survival rate of tree and shrub species cultivated in the forestry of the Republic of Kalmykia. It is concluded that carrying out forest cultivation works in the autumn period has no advantages in survival rate over the spring period and they should be carried out either in early spring (in late March and early April) on thawing soil, or in autumn, before the onset of persistent cold weather. The main factor of successful afforestation in the dry steppe and semi-desert is the correct selection of the forest area, the accuracy and quality of forest planting, agrotechnical and forestry care. Special attention should be paid to the control of locust pests, which in the conditions of Kalmykia in some years can cause significant damage to the planting of young forest crops.


2020 ◽  
Vol 12 (4) ◽  
pp. 2747-2763
Author(s):  
Dagmar Hainbucher ◽  
Marta Álvarez ◽  
Blanca Astray Uceda ◽  
Giancarlo Bachi ◽  
Vanessa Cardin ◽  
...  

Abstract. The last few decades have seen dramatic changes in the hydrography and biogeochemistry of the Mediterranean Sea. The complex bathymetry and highly variable spatial and temporal scales of atmospheric forcing, convective and ventilation processes contribute to generate complex and unsteady circulation patterns and significant variability in biogeochemical systems. Part of the variability of this system can be influenced by anthropogenic contributions. Consequently, it is necessary to document details and to understand trends in place to better relate the observed processes and to possibly predict the consequences of these changes. In this context we report data from an oceanographic cruise in the Mediterranean Sea on the German research vessel Maria S. Merian (MSM72) in March 2018. The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake and to further assess the hydrographical situation after the major climatological shifts in the eastern and western part of the basin, known as the Eastern and Western Mediterranean Transients. During the cruise, multidisciplinary measurements were conducted on a predominantly zonal section throughout the Mediterranean Sea, contributing to the Med-SHIP and GO-SHIP long-term repeat cruise section that is conducted at regular intervals in the Mediterranean Sea to observe changes and impacts on physical and biogeochemical variables. The data can be accessed at https://doi.org/10.1594/PANGAEA.905902 (Hainbucher et al., 2019), https://doi.org/10.1594/PANGAEA.913512 (Hainbucher, 2020a) https://doi.org/10.1594/PANGAEA.913608, (Hainbucher, 2020b) https://doi.org/10.1594/PANGAEA.913505, (Hainbucher, 2020c) https://doi.org/10.1594/PANGAEA.905887 (Tanhua et al., 2019) and https://doi.org/10.25921/z7en-hn85 (Tanhua et al, 2020).


2020 ◽  
Author(s):  
Dagmar Hainbucher ◽  
Marta Álvarez ◽  
Blanca Astray Uceda ◽  
Giancarlo Bachi ◽  
Vanessa Cardin ◽  
...  

Abstract. The last decades have seen dramatic changes in the hydrography and biogeochemistry of the Mediterranean Sea. The complex bathymetry, highly variable spatial and temporal scales of atmospheric forcing and internal processes contribute to generate complex and unsteady circulation patterns and significant variability in biogeochemical systems. Part of this variability can be influenced by anthropogenic contributions. Consequently, it is necessary to document details and to understand trends in place to better relate the observed processes and to possibly predict the consequences of these changes. In this context we report on data from an oceanographic cruise in the Mediterranean Sea on the German research vessel MARIA S. MERIAN (MSM72) in March 2018. The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake and to further assess the hydrographical situation after the major climatological shifts in the eastern and western part of the basin, known as the Eastern and Western Mediterranean Transients. During the cruise, multidisciplinary measurements were conducted on a predominantly zonal section throughout the Mediterranean Sea, contributing to the global GO-SHIP repeating hydrography program and adhering to the GO-SHIP requirements.


2020 ◽  
Author(s):  
Johannes Karstensen ◽  
Alexandra Andrae ◽  
Ludwig Bitzan ◽  
Jakob Deutloff ◽  
Christiane Lösel ◽  
...  

Oct. 07 2019 – Oct. 10, 2019 Kiel (Germany) – Kiel (Germany) MNF-Pher-110The main purpose of the ALKOR cruise AL529 was the training of students in observational techniques applied by physical oceanographers. The students who participated in the trip attend the module "Measurement Methods of Oceanography" which is offered in the Bachelor program "Physics of the Earth System" at CAU Kiel. During the AL529 the students were instructed in instrument calibration and in the interpretation of measurement data at sea. In addition, the students had the opportunity to learn about working and living at sea and to explore and study the impact of physical processes in the western Baltic Sea, the sea at their doorstep. The observations show a quasi-synoptic picture of the hydrography and currents in the western Baltic Sea. Twice-repeated hydrographic and current sections across the Fehmarn Belt show well the short time scales where significant changes occur. A zonal section along the deepest topography, from about 10°40'E to 014°21'E, shows very nicely the two-layer system of outflowing low salinity and inflowing North Sea water. A bottom shield anchorage shows the currents in the water column and the near-bottom temperature and salinity variations in the Fehmarnbelt area.


2019 ◽  
Vol 59 (1) ◽  
pp. 5-11
Author(s):  
A. P. Mirabel ◽  
N. V. Vakulenko

A model of an advective thermocline is proposed for the case of continuously stratified Sverdrup circulation with a ventilated layer caused by the divergence of flows in the Ekman layer: an immiscible layer with homogenized vorticity and a layer of abyssal liquid, which applies to anticyclonic gyre waters. The results of calculations for the Atlantic Ocean (region 15-52°N, 00-63°E) made with this model are presented. With an abyssal density of 28.0, the values of the surface density and density of the unventilated layer grow to the north from 24.2 to 27.0 and from 27.8 to 27.9, respectively, with an almost zonal distribution, i.e. ventilation zones have latitudinal circles. From calculations of the depths of wind circulation, it follows that the ventilating layer is as deep as 900 m in the north-western region and raises to 250 m in the southern and eastern parts of the basin. The same tendency is traced for the depth of the gyre, but here there is an increase in depth from 500 to 1500 m. The active dynamics in the ventilating layer and the shadow area on the eastern border are noted. The structure of the thermocline is demonstrated with a typical zonal section, characterizing a much larger isopycnic increment for ventilated layers than in non-ventilated layers.


2018 ◽  
Vol 32 (2) ◽  
pp. 187-207 ◽  
Author(s):  
Michael J. Ellwood ◽  
Andrew R. Bowie ◽  
Alex Baker ◽  
Melanie Gault-Ringold ◽  
Christel Hassler ◽  
...  

2016 ◽  
Vol 186 ◽  
pp. 156-166 ◽  
Author(s):  
Katlin L. Bowman ◽  
Chad R. Hammerschmidt ◽  
Carl H. Lamborg ◽  
Gretchen J. Swarr ◽  
Alison M. Agather

2015 ◽  
Vol 33 (2) ◽  
Author(s):  
Lívia Maria Barbosa Sancho ◽  
Luiz Paulo De Freitas Assad ◽  
Luiz Landau

ABSTRACT. This study evaluates how climate change might affect advective heat and volume transports in the South Atlantic Basin based on Intergovernmental Panel on Climate Change (IPCC) A1FI and B1 climate change scenarios projections. Using the Climatic Model 2.1 (CM2.1) results that were developed by the Geophysical Fluid Dynamics Laboratory (GFDL), integrated on the water column, analyses were conducted through two meridional sections and one zonal section of the study area (between 25◦S-70◦S and 70◦W-20◦E). The annual mean time series were analyzed using historical 100-year climate change scenarios. The analyses of the climate change experiment parameters were compared with those of the H2 climate scenario. The volume transport (VT) through the water column weakened of about 5% in average and the advective heat transport (HT) increased of about 22% at the Drake and Africa-Antarctic (AF-AA) passages at the end of the experiments. For the zonal section at 25◦S, direction oscillations were observed in the integrated VT through the water column due to velocity intensity variations of the water masses and a decrease of about 22% in the HT was observed. Thus, it was observed a decrease in the water and heat supplies at 25◦S due to the Drake and AF-AA VT behavior, which may alter deep circulation patterns.Keywords: water column analysis, advective heat transport, flow direction, Drake Passage, Africa-Antarctic passage.RESUMO. Baseado nas projeções dos cenários de mudanças climáticas A1FI e B1 do Painel Intergovernamental de Mudanc¸as Climáticas (IPCC), esse estudo avalia como as mudanças climáticas podem impactar os transportes advectivos de calor e volume na bacia do Atlântico Sul. Através de resultados gerados pelo Modelo Climático 2.1 (CM2.1) desenvolvido pelo Geophysical Fluid Dynamics Laboratory (GFDL), foram feitas análises através de duas seções meridionais e uma seção zonal na área de estudo (entre 25◦S-70◦S e 70◦W-20◦E) integradas na coluna d’água. Foram analisados campos prognósticos médios anuais referentes a experimentos com 100 anos de duração. As análises dos parâmetros dos experimentos de mudanças climáticas foram realizadas em comparação com o experimento clima (H2). O transporte de volume (TV) integrado na coluna d’água enfraqueceu aproximadamente 5%, enquanto o transporte advectivo de calor (TC) aumentou em torno de 22% no Drake e na Passagem África-Antártida (AF-AA) ao final dos experimentos. Para a seção em 25◦S, foram observadas oscilações de direção do fluxo devido a variações na intensidade das velocidades das massas d’água com um enfraquecimento médio de 22% para o TC. Adicionalmente, foi observada uma diminuição no suprimento de água em 25◦S devido ao comportamento do TV das demais seções, o que pode alterar os padrões de circulação profunda.Palavras-chave: análise na coluna d’água, transporte advectivo de calor, direção do fluxo, Passagem de Drake, passagem África-Antártida.


2005 ◽  
Vol 22 (7) ◽  
pp. 1069-1079
Author(s):  
Manuel Vargas-Yáñez ◽  
Gregorio Parrilla ◽  
Alicia Lavín ◽  
Pedro Vélez-Belchí ◽  
César González-Pola ◽  
...  

Abstract Ocean hydrological sections provide a very useful mean to study the ocean circulation as well as to determine water mass properties and to estimate fluxes. One basic method for their analysis is the spatial interpolation of data, obtained from a set of predefined stations, into a regular grid for contouring isolines and for further calculations. The shortest length scales that can be solved are limited by the distance between stations. Some of these scales, though resoluble by the sampling design, may be, with respect to time variability, shorter than the time that is needed to complete the section. This situation can produce a lack of synopticity in the obtained data, which is not usually addressed in oceanographic studies because the sequential repetition of oceanographic surveys is not an easy task. Here two samplings are compared—one by CTD- and another by Array for Real-Time Geostrophic Oceanography (Argo)-type profilers—of the same zonal section with a 5-day delay. The integral time scale for the mesoscale field is around 11 days, which implies that the mesoscale signal obtained from consecutive transmissions of the profilers are weakly correlated. The mesoscale field in a transatlantic section, which typically takes 20 days to be carried out, cannot be considered as synoptic.


Sign in / Sign up

Export Citation Format

Share Document