scholarly journals l-Methionine Degradation Pathway in Kluyveromyces lactis: Identification and Functional Analysis of the Genes Encoding l-Methionine Aminotransferase

2006 ◽  
Vol 72 (5) ◽  
pp. 3330-3335 ◽  
Author(s):  
Dafni-Maria Kagkli ◽  
Pascal Bonnarme ◽  
C�cile Neuv�glise ◽  
Timothy M. Cogan ◽  
Serge Casaregola

ABSTRACT Kluyveromyces lactis is one of the cheese-ripening yeasts and is believed to contribute to the formation of volatile sulfur compounds (VSCs) through degradation of l-methionine. l-Methionine aminotransferase is potentially involved in the pathway that results in the production of methanethiol, a common precursor of VSCs. Even though this pathway has been studied previously, the genes involved have never been studied. In this study, on the basis of sequence homology, all the putative aminotransferase-encoding genes from K. lactis were cloned in an overproducing vector, pCXJ10, and their effects on the production of VSCs were analyzed. Two genes, KlARO8.1 and KlARO8.2, were found to be responsible for l-methionine aminotransferase activity. Transformants carrying these genes cloned in the pCXJ10 vector produced threefold-larger amounts of VSCs than the transformant containing the plasmid without any insert or other related putative aminotransferases produced.

Author(s):  
Fatma Ben Abid ◽  
Clement K. M. Tsui ◽  
Yohei Doi ◽  
Anand Deshmukh ◽  
Christi L. McElheny ◽  
...  

AbstractOne hundred forty-nine carbapenem-resistant Enterobacterales from clinical samples obtained between April 2014 and November 2017 were subjected to whole genome sequencing and multi-locus sequence typing. Klebsiella pneumoniae (81, 54.4%) and Escherichia coli (38, 25.5%) were the most common species. Genes encoding metallo-β-lactamases were detected in 68 (45.8%) isolates, and OXA-48-like enzymes in 60 (40.3%). blaNDM-1 (45; 30.2%) and blaOXA-48 (29; 19.5%) were the most frequent. KPC-encoding genes were identified in 5 (3.6%) isolates. Most common sequence types were E. coli ST410 (8; 21.1%) and ST38 (7; 18.4%), and K. pneumoniae ST147 (13; 16%) and ST231 (7; 8.6%).


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Elvira Garza-González ◽  
Paola Bocanegra-Ibarias ◽  
Eduardo Rodríguez-Noriega ◽  
Esteban González-Díaz ◽  
Jesús Silva-Sanchez ◽  
...  

Abstract Background This study aimed to determine the epidemiological, microbiological, and molecular characteristics of an outbreak of carbapenem-resistant Leclercia adecarboxylata in three hospitals associated with the unintended use of contaminated total parental nutrition (TPN). Methods For 10 days, 25 patients who received intravenous TPN from the same batch of a formula developed sepsis and had blood cultures positive for L. adecarboxylata. Antimicrobial susceptibility and carbapenemase production were performed in 31 isolates, including one from an unopened bottle of TPN. Carbapenemase-encoding genes, extended-spectrum β-lactamase–encoding genes were screened by PCR, and plasmid profiles were determined. Horizontal transfer of carbapenem resistance was performed by solid mating. Clonal diversity was performed by pulsed-field gel electrophoresis. The resistome was explored by whole-genome sequencing on two selected strains, and comparative genomics was performed using Roary. Results All 31 isolates were resistant to aztreonam, cephalosporins, carbapenems, trimethoprim/sulfamethoxazole, and susceptible to gentamicin, tetracycline, and colistin. Lower susceptibility to levofloxacin (51.6%) and ciprofloxacin (22.6%) was observed. All the isolates were carbapenemase producers and positive for blaNDM-1, blaTEM-1B, and blaSHV-12 genes. One main lineage was detected (clone A, 83.9%; A1, 12.9%; A2, 3.2%). The blaNDM-1 gene is embedded in a Tn125-like element. Genome analysis showed genes encoding resistance for aminoglycosides, quinolones, trimethoprim, colistin, phenicols, and sulphonamides and the presence of IncFII (Yp), IncHI2, and IncHI2A incompatibility groups. Comparative genomics showed a major phylogenetic relationship among L. adecarboxylata I1 and USDA-ARS-USMARC-60222 genomes, followed by our two selected strains. Conclusion We present epidemiological, microbiological, and molecular evidence of an outbreak of carbapenem-resistant L. adecarboxylata in three hospitals in western Mexico associated with the use of contaminated TPN.


2014 ◽  
Vol 58 (9) ◽  
pp. 5589-5593 ◽  
Author(s):  
Anna L. Sartor ◽  
Muhammad W. Raza ◽  
Shahid A. Abbasi ◽  
Kathryn M. Day ◽  
John D. Perry ◽  
...  

ABSTRACTThe molecular epidemiology of 66 NDM-producing isolates from 2 Pakistani hospitals was investigated, with their genetic relatedness determined using repetitive sequence-based PCR (Rep-PCR). PCR-based replicon typing and screening for antibiotic resistance genes encoding carbapenemases, other β-lactamases, and 16S methylases were also performed. Rep-PCR suggested a clonal spread ofEnterobacter cloacaeandEscherichia coli. A number of plasmid replicon types were identified, with the incompatibility A/C group (IncA/C) being the most common (78%). 16S methylase-encoding genes were coharbored in 81% of NDM-producingEnterobacteriaceae.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Vikas D. Trivedi ◽  
Pramod Kumar Jangir ◽  
Rakesh Sharma ◽  
Prashant S. Phale

Abstract Carbaryl (1-naphthyl N-methylcarbamate) is a most widely used carbamate pesticide in the agriculture field. Soil isolate, Pseudomonas sp. strain C5pp mineralizes carbaryl via 1-naphthol, salicylate and gentisate, however the genetic organization and evolutionary events of acquisition and assembly of pathway have not yet been studied. The draft genome analysis of strain C5pp reveals that the carbaryl catabolic genes are organized into three putative operons, ‘upper’, ‘middle’ and ‘lower’. The sequence and functional analysis led to identification of new genes encoding: i) hitherto unidentified 1-naphthol 2-hydroxylase, sharing a common ancestry with 2,4-dichlorophenol monooxygenase; ii) carbaryl hydrolase, a member of a new family of esterase; and iii) 1,2-dihydroxy naphthalene dioxygenase, uncharacterized type-II extradiol dioxygenase. The ‘upper’ pathway genes were present as a part of a integron while the ‘middle’ and ‘lower’ pathway genes were present as two distinct class-I composite transposons. These findings suggest the role of horizontal gene transfer event(s) in the acquisition and evolution of the carbaryl degradation pathway in strain C5pp. The study presents an example of assembly of degradation pathway for carbaryl.


1983 ◽  
Vol 50 (4) ◽  
pp. 469-480 ◽  
Author(s):  
Paul A. Grieve ◽  
Barry J. Kitchen ◽  
John R. Dulley ◽  
John Bartley

SUMMARYAn extract ofKluyveromyces lactis416 and a β-galactosidase preparation (Maxilact 40000) contaminated with proteinase, showed similar pH profiles of caseinolytic activity. Similar modes of casein hydrolysis (κ-, > αs-, ≥ β-) were observed at pH 5·0 (the pH of Cheddar cheese), without detection of bitterness. The contaminated Maxilact preparation contained similar proteinase types to those detected in an autolysate ofK. lactis. Both the autolysate and the Maxilact preparation contained acid endopeptidase (proteinase A), serine endopeptidase (proteinase B) and serine exopeptidase (carboxypeptidase Y) activities. Some aminopeptidase activity was also detected in both preparations. There were some differences in apparent molecular weight and charge properties between proteinase A and B and carboxypeptidase Y from the 2 proteinase sources.


2003 ◽  
Vol 14 (8) ◽  
pp. 3449-3458 ◽  
Author(s):  
Agnès Baudin-Baillieu ◽  
Eric Fernandez-Bellot ◽  
Fabienne Reine ◽  
Eric Coissac ◽  
Christophe Cullin

The yeast inheritable [URE3] element corresponds to a prion form of the nitrogen catabolism regulator Ure2p. We have isolated several orthologous URE2 genes in different yeast species: Saccharomyces paradoxus, S. uvarum, Kluyveromyces lactis, Candida albicans, and Schizosaccharomyces pombe. We show here by in silico analysis that the GST-like functional domain and the prion domain of the Ure2 proteins have diverged separately, the functional domain being more conserved through the evolution. The more extreme situation is found in the two S. pombe genes, in which the prion domain is absent. The functional analysis demonstrates that all the homologous genes except for the two S. pombe genes are able to complement the URE2 gene deletion in a S. cerevisiae strain. We show that in the two most closely related yeast species to S. cerevisiae, i.e., S. paradoxus and S. uvarum, the prion domains of the proteins have retained the capability to induce [URE3] in a S. cerevisiae strain. However, only the S. uvarum full-length Ure2p is able to behave as a prion. We also show that the prion inactivation mechanisms can be cross-transmitted between the S. cerevisiae and S. uvarum prions.


2018 ◽  
Vol 115 (11) ◽  
pp. 2818-2823 ◽  
Author(s):  
Wei Tang ◽  
Zhengyan Guo ◽  
Zhenju Cao ◽  
Min Wang ◽  
Pengwei Li ◽  
...  

Seven-carbon-chain–containing sugars exist in several groups of important bacterial natural products. Septacidin represents a group of l-heptopyranoses containing nucleoside antibiotics with antitumor, antifungal, and pain-relief activities. Hygromycin B, an aminoglycoside anthelmintic agent used in swine and poultry farming, represents a group of d-heptopyranoses–containing antibiotics. To date, very little is known about the biosynthesis of these compounds. Here we sequenced the genome of the septacidin producer and identified the septacidin gene cluster by heterologous expression. After determining the boundaries of the septacidin gene cluster, we studied septacidin biosynthesis by in vivo and in vitro experiments and discovered that SepB, SepL, and SepC can convert d-sedoheptulose-7-phosphate (S-7-P) to ADP-l-glycero-β-d-manno-heptose, exemplifying the involvement of ADP-sugar in microbial natural product biosynthesis. Interestingly, septacidin, a secondary metabolite from a gram-positive bacterium, shares the same ADP-heptose biosynthesis pathway with the gram-negative bacterium LPS. In addition, two acyltransferase-encoding genes sepD and sepH, were proposed to be involved in septacidin side-chain formation according to the intermediates accumulated in their mutants. In hygromycin B biosynthesis, an isomerase HygP can recognize S-7-P and convert it to ADP-d-glycero-β-d-altro-heptose together with GmhA and HldE, two enzymes from the Escherichia coli LPS heptose biosynthetic pathway, suggesting that the d-heptopyranose moiety of hygromycin B is also derived from S-7-P. Unlike the other S-7-P isomerases, HygP catalyzes consecutive isomerizations and controls the stereochemistry of both C2 and C3 positions.


2020 ◽  
Vol 8 (4) ◽  
pp. 546 ◽  
Author(s):  
Jürgen J. Heinisch ◽  
Johannes Knuesting ◽  
Renate Scheibe

Glucose-6-phosphate dehydrogenase (G6PD) is a key enzyme of the oxidative part of the pentose phosphate pathway and serves as the major source of NADPH for metabolic reactions and oxidative stress response in pro- and eukaryotic cells. We here report on a strain of the model yeast Saccharomyces cerevisiae which lacks the G6PD-encoding ZWF1 gene and displays distinct growth retardation on rich and synthetic media, as well as a strongly reduced chronological lifespan. This strain was used as a recipient to introduce plasmid-encoded heterologous G6PD genes, synthesized in the yeast codon usage and expressed under the control of the native PFK2 promotor. Complementation of the hypersensitivity of the zwf1 mutant towards hydrogen peroxide to different degrees was observed for the genes from humans (HsG6PD1), the milk yeast Kluyveromyces lactis (KlZWF1), the bacteria Escherichia coli (EcZWF1) and Leuconostoc mesenteroides (LmZWF1), as well as the genes encoding three different plant G6PD isoforms from Arabidopsis thaliana (AtG6PD1, AtG6PD5, AtG6PD6). The plastidic AtG6PD1 isoform retained its redox-sensitive activity when produced in the yeast as a cytosolic enzyme, demonstrating the suitability of this host for determination of its physiological properties. Mutations precluding the formation of a disulfide bridge in AtG6PD1 abolished its redox-sensitivity but improved its capacity to complement the yeast zwf1 deletion. Given the importance of G6PD in human diseases and plant growth, this heterologous expression system offers a broad range of applications.


Microbiology ◽  
2014 ◽  
Vol 160 (10) ◽  
pp. 2295-2303 ◽  
Author(s):  
Yuka Narita ◽  
Keiko Sato ◽  
Hideharu Yukitake ◽  
Mikio Shoji ◽  
Daisuke Nakane ◽  
...  

Tannerella forsythia, a Gram-negative anaerobic bacterium, is an important pathogen in periodontal disease. This bacterium possesses genes encoding all known components of the type IX secretion system (T9SS). T. forsythia mutants deficient in genes orthologous to the T9SS-encoding genes porK, porT and sov were constructed. All porK, porT and sov single mutants lacked the surface layer (S-layer) and expressed less-glycosylated versions of the S-layer glycoproteins TfsA and TfsB. In addition, these mutants exhibited decreased haemagglutination and increased biofilm formation. Comparison of the proteins secreted by the porK and WT strains revealed that the secretion of several proteins containing C-terminal domain (CTD)-like sequences is dependent on the porK gene. These results indicate that the T9SS is functional in T. forsythia and contributes to the translocation of CTD proteins to the cell surface or into the extracellular milieu.


2005 ◽  
Vol 71 (8) ◽  
pp. 4359-4363 ◽  
Author(s):  
Tiziana Lodi ◽  
Barbara Neglia ◽  
Claudia Donnini

ABSTRACT The control of protein conformation during translocation through the endoplasmic reticulum is often a bottleneck for heterologous protein production. The core pathway of the oxidative folding machinery includes two conserved proteins: Pdi1p and Ero1p. We increased the dosage of the genes encoding these proteins in the yeast Kluyveromyces lactis and evaluated the secretion of heterologous proteins. KlERO1, an orthologue of Saccharomyces cerevisiae ERO1, was cloned by functional complementation of the ts phenotype of an Scero1 mutant. The expression of KlERO1 was induced by treatment of the cells with dithiothreitol and by overexpression of human serum albumin (HSA), a disulfide bond-rich protein. Duplication of either PDI1 or ERO1 led to a similar increase in HSA yield. Duplication of both genes accelerated the secretion of HSA and improved cell growth rate and yield. Increasing the dosage of KlERO1 did not affect the production of human interleukin 1β, a protein that has no disulfide bridges. The results confirm that the ERO1 genes of S. cerevisiae and K. lactis are functionally similar even though portions of their coding sequence are quite different and the phenotypes of mutants overexpressing the genes differ. The marked effects of KlERO1 copy number on the expression of heterologous proteins with a high number of disulfide bridges suggests that control of KlERO1 and KlPDI1 is important for the production of high levels of heterologous proteins of this type.


Sign in / Sign up

Export Citation Format

Share Document