scholarly journals Influence of tropical convective enhancement in Pacific on the trend of stratospheric sudden warmings in Northern Hemisphere

2021 ◽  
Author(s):  
Yuanpu Li ◽  
Zhiping Wen

AbstractThe exploration of the trend in stratospheric sudden warmings (SSWs) is conducive to predict SSWs in the future. Utilizing the National Centre for Environmental Prediction Reanalysis (NCEP) (1948–2020) and Japanese 55-year Reanalysis (JRA55) (1958–2020), we investigated the duration and strength of SSWs in the Northern Hemisphere occurred in the boreal winter (December–February). We found the duration of SSWs tends to increase and the strength of SSWs tends to strengthen from 1948 to 2003. After 2003, these trends did not continue. We utilized the observed cloudiness from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) to find that the convective activities in the tropical Central Pacific were enhanced during 1948–2003, and the enhancement of the convective activities did not continue after 2003. The circulation anomalies caused by the enhanced convective activities propagate to the high latitudes through wave trains. The anomalies of circulation and the climatological circulation at high latitudes interfere with each other and superimpose, which has a significant impact on planetary wave 1 (PW1). As a result, the PW1 also showed an increasing trend from 1948 to 2003 and a decreasing trend after 2003. After the stratosphere filters out the planetary wave with a large wavenumber, PW1 accounts for more proportion of planetary waves, which causes the trend in SSWs to change.

2021 ◽  
Author(s):  
Yuanpu Li ◽  
Zhiping Wen

Abstract The exploration of the trend of stratospheric sudden warming (SSW) in the Northern Hemisphere is conducive to predict SSWs in the future. Utilizing the National Centre for Environmental Prediction (NCEP) (1948–2017) and Japanese 55-year reanalysis data (JRA55) (1958–2017), we investigated the duration and strength of SSWs in the Northern Hemisphere winter (December-February). We found the duration of SSWs has an increasing trend and the strength of SSWs tends to strengthen from 1948 to 2003. However, after 2003, these trends did not continue. We also utilize the observed cloudiness from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS) to examine the convective activities in the tropical Pacific and found that the convective activities in the tropical central Pacific are enhanced during the period of 1948–2003, and the trend of the enhancement of the convective activities ceases after 2003. The circulation anomalies caused by the enhanced convective activities propagate to the troposphere at high latitudes through wave trains. The anomalies of circulation and the climatic circulation at high latitudes interfere with each other and superimpose, which has a significant impact on planetary wave 1 (PW1). As a result, the PW1 in the troposphere also showed an increasing trend from 1948 to 2003 and a decreasing trend after 2003. After the stratosphere filters out the planetary wave with a large wavenumber, PW1 accounts for more proportion of planetary waves, which causes the trend of SSW to change synchronously.


2016 ◽  
Vol 29 (12) ◽  
pp. 4597-4616 ◽  
Author(s):  
Stephanie A. Henderson ◽  
Eric D. Maloney ◽  
Elizabeth A. Barnes

Abstract The persistent and quasi-stationary nature of atmospheric blocking is associated with long-lasting extreme weather conditions that influence much of the Northern Hemisphere during boreal winter. The Madden–Julian oscillation (MJO) has been previously shown to influence important factors for blocking, including Rossby wave breaking and the North Atlantic Oscillation (NAO). However, the extent to which the MJO influences blocking across the Northern Hemisphere is not yet fully understood. Utilizing a two-dimensional blocking index, composites of North Pacific, North Atlantic, and European blocking are generated relative to MJO phase. In the west and central Pacific, all MJO phases demonstrate significant changes in blocking, particularly at high latitudes. A significant decrease in east Pacific and Atlantic blocking occurs following phase 3 of the MJO, characterized by enhanced convection over the tropical East Indian Ocean and suppressed convection in the west Pacific. The opposite-signed MJO heating during phase 7 is followed by a significant increase in east Pacific and Atlantic blocking. A significant decrease in European blocking follows MJO phase 4, with an increase after phase 6. The phase 6 European blocking is hypothesized to result from two preexisting conditions: 1) an anomalous anticyclone over the Atlantic and 2) a preceding negative Pacific–North American (PNA) pattern initialized and influenced by MJO heating.


2018 ◽  
Vol 31 (13) ◽  
pp. 5031-5049 ◽  
Author(s):  
Feiyang Wang ◽  
Wenshou Tian ◽  
Fei Xie ◽  
Jiankai Zhang ◽  
Yuanyuan Han

This study uses reanalysis datasets and numerical experiments to investigate the influence of the occurrence frequency of the individual phases of the Madden–Julian oscillation (MJO) on the interannual variability of stratospheric wave activity in the middle and high latitudes of the Northern Hemisphere during boreal winter [November–February (NDJF)]. Our analysis reveals that the occurrence frequency of MJO phase 4 in winter is significantly positively correlated with the interannual variability of the Eliassen–Palm (E–P) flux divergence anomalies in the northern extratropical stratosphere; that is, higher (lower) occurrence frequency of MJO phase 4 corresponds to weaker (stronger) upward wave fluxes and increased (decreased) E–P flux divergence anomalies in the middle and upper stratosphere at mid-to-high latitudes, which implies depressed (enhanced) wave activity accompanied by a stronger (weaker) polar vortex in that region. The convection anomalies over the Maritime Continent related to MJO phase 4 excite a Rossby wave train that propagates poleward to middle and high latitudes, and is in antiphase with the climatological stationary waves of wavenumber 1 at middle and high latitudes. As the spatial distribution of the convection anomalies during MJO phase 7 has an almost opposite, but weaker, pattern to that during MJO phase 4, the occurrence frequency of MJO phase 7 has an opposite and weaker effect on the northern extratropical stratosphere to MJO phase 4. However, the other MJO phases (1, 2, 3, 5, 6, and 8) cannot significantly influence the northern extratropical stratosphere because the wave responses in these phases are neither totally in nor out of phase with the background stationary wavenumber 1.


2010 ◽  
Vol 10 (10) ◽  
pp. 23197-23227 ◽  
Author(s):  
K. A. Day ◽  
R. E. Hibbins ◽  
N. J. Mitchell

Abstract. The Microwave Limb Sounder (MLS) on the Aura satellite has been used to measure temperatures in the stratosphere, mesosphere and lower thermosphere (MLT). The data used here are from August 2004 to June 2010 and latitudes 75° S to 75° N. The temperature data reveal the persistent presence of a westward propagating 16-day planetary wave with zonal wavenumber 1. The wave amplitude maximises in winter in the stratosphere and MLT at middle to high latitudes, where monthly-mean amplitudes can be as large as ~8 K. Significant wave amplitudes are observed in the summer-time MLT and at lower stratospheric heights of up to ~20 km at middle to high latitudes. Wave amplitudes in the Northern Hemisphere approach values twice as large as those in the Southern Hemisphere. Wave amplitudes are also closely related to climatological zonal winds and are largest in regions of strongest eastward flow. There is a~reduction in wave amplitudes at the stratopause. No significant wave amplitude is observed near the equator or in the strongly westward background winds of the atmosphere in summer. This behaviour is interpreted as a consequence of wave/mean-flow interactions. It has been suggested that the summer-time 16-day wave in the MLT is ducted across the equator from the winter hemisphere and that this ducting is modulated by the equatorial Quasi-Biennial Oscillation (QBO) in the westerly phase. Here we observe that the QBO modulates the 16-day wave in the polar summer-time MLT in the Northern Hemisphere as previously observed, but this modulation is not seen in the Southern Hemisphere.


2011 ◽  
Vol 24 (20) ◽  
pp. 5397-5415 ◽  
Author(s):  
Barbara Winter ◽  
Michel S. Bourqui

Abstract Using the chemistry climate model Intermediate General Circulation Model–Fast Stratospheric Ozone Chemistry (IGCM-FASTOC), the authors analyze the response in the Northern Hemisphere winter stratosphere to idealized thermal forcing imposed at the surface. The forcing is a 2-K temperature anomaly added to the control surface temperature at all grid points within a latitudinal window of 10° or 30°. The bandwise forcing is applied systematically throughout all latitudes of the Northern Hemisphere. Thermal forcing applied anywhere equatorward of 20°N, or continuously from the equator to 30°N, increases planetary-wave generation in the troposphere and enhances the flux of wave activity propagating vertically into the stratosphere. Consequently, a greater flux of wave activity breaks in the polar vortex, increasing the Brewer–Dobson circulation and leading to a warm anomaly in the polar stratosphere. Ozone concentration increases at high latitudes and decreases at low latitudes. Thermal surface forcing imposed between 30° and 60°N has the reverse effect—decreased planetary-wave generation in the lower troposphere and reduced vertically propagating wave flux entering the stratosphere—and leads to a stronger and colder vortex. Thermal forcing applied poleward of 60°N has little effect on the tropospheric mean state but nonetheless decreases the planetary-scale eddy heat flux from the surface to the tropopause, resulting in a sufficient decrease of the vertical flux of wave activity for the vortex to be anomalously strong and cold. When surface forcing is imposed only poleward of 30°N, ozone concentration decreases at high latitudes but is not affected at low latitudes. Combining the forcing in an equatorial and an extratropical band leads to a response similar to that of the equatorial forcing, demonstrating that the subtropical surface temperature changes determine the sign of the surface-driven response in the vortex.


2011 ◽  
Vol 11 (9) ◽  
pp. 4149-4161 ◽  
Author(s):  
K. A. Day ◽  
R. E. Hibbins ◽  
N. J. Mitchell

Abstract. The Microwave Limb Sounder (MLS) on the Aura satellite has been used to measure temperatures in the stratosphere, mesosphere and lower thermosphere. The data used here are from August 2004 to December 2010 and latitudes 75° N to 75° S. The temperature data reveal the regular presence of a westward-propagating 16-day planetary wave with zonal wavenumber 1. The wave amplitudes maximise in winter at middle to high latitudes, where monthly-mean amplitudes can be as large as ~8 K. Significant wave amplitudes are also observed in the summer-time mesosphere and lower thermosphere (MLT) and at lower stratospheric heights of up to ~20 km at middle to high latitudes. Wave amplitudes in the Northern Hemisphere approach values twice as large as those in the Southern Hemisphere. Wave amplitudes are also closely related to mean zonal winds and are largest in regions of strongest eastward flow. There is a reduction in wave amplitudes at the stratopause. No significant wave amplitudes are observed near the equator or in the strongly westward background winds of the atmosphere in summer. This behaviour is interpreted as a consequence of wave/mean-flow interactions. Perturbations in wave amplitude summer MLT are compared to those simultaneously observed in the winter stratosphere of the opposite hemisphere and found to have a correlation coefficient of +0.22, suggesting a small degrees of inter-hemispheric coupling. We interpret this to mean that some of the summer-time MLT wave may originate in the winter stratosphere of the opposite hemisphere and have been ducted across the equator. We do not observe a significant QBO modulation of the 16-day wave amplitude in the polar summer-time MLT. Wave amplitudes were also observed to be suppressed during the major sudden stratospheric warming events of the Northern Hemisphere winters of 2006 and 2009.


2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2013 ◽  
Vol 26 (14) ◽  
pp. 5220-5241 ◽  
Author(s):  
Isla R. Simpson ◽  
Theodore G. Shepherd ◽  
Peter Hitchcock ◽  
John F. Scinocca

Abstract Many global climate models (GCMs) have trouble simulating southern annular mode (SAM) variability correctly, particularly in the Southern Hemisphere summer season where it tends to be too persistent. In this two-part study, a suite of experiments with the Canadian Middle Atmosphere Model (CMAM) is analyzed to improve the understanding of the dynamics of SAM variability and its deficiencies in GCMs. Here, an examination of the eddy–mean flow feedbacks is presented by quantification of the feedback strength as a function of zonal scale and season using a new methodology that accounts for intraseasonal forcing of the SAM. In the observed atmosphere, in the summer season, a strong negative feedback by planetary-scale waves, in particular zonal wavenumber 3, is found in a localized region in the southwest Pacific. It cancels a large proportion of the positive feedback by synoptic- and smaller-scale eddies in the zonal mean, resulting in a very weak overall eddy feedback on the SAM. CMAM is deficient in this negative feedback by planetary-scale waves, making a substantial contribution to its bias in summertime SAM persistence. Furthermore, this bias is not alleviated by artificially improving the climatological circulation, suggesting that climatological circulation biases are not the cause of the planetary wave feedback deficiency in the model. Analysis of the summertime eddy feedbacks in the models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) confirms that this is indeed a common problem among GCMs, suggesting that understanding this planetary wave feedback and the reason for its deficiency in GCMs is key to improving the fidelity of simulated SAM variability in the summer season.


1996 ◽  
Vol 14 (4) ◽  
pp. 464-467 ◽  
Author(s):  
R. P. Kane

Abstract. The 12-month running means of the surface-to-500 mb precipitable water obtained from analysis of radiosonde data at seven selected locations showed three types of variability viz: (1) quasi-biennial oscillations; these were different in nature at different latitudes and also different from the QBO of the stratospheric tropical zonal winds; (2) decadal effects; these were prominent at middle and high latitudes and (3) linear trends; these were prominent at low latitudes, up trends in the Northern Hemisphere and downtrends in the Southern Hemisphere.


2010 ◽  
Vol 67 (10) ◽  
pp. 3097-3112 ◽  
Author(s):  
Katrina S. Virts ◽  
John M. Wallace

Abstract Cloud fields based on the first three years of data from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission are used to investigate the relationship between cirrus within the tropical tropopause transition layer (TTL) and the Madden–Julian oscillation (MJO), the annual cycle, and El Niño–Southern Oscillation (ENSO). The TTL cirrus signature observed in association with the MJO resembles convectively induced, mixed Kelvin–Rossby wave solutions above the Pacific warm pool region. This signature is centered to the east of the peak convection and propagates eastward more rapidly than the convection; it exhibits a pronounced eastward tilt with height, suggestive of downward phase propagation and upward energy dispersion. A cirrus maximum is observed over equatorial Africa and South America when the enhanced MJO-related convection enters the western Pacific. Tropical-mean TTL cirrus is modulated by the MJO, with more than twice as much TTL cirrus fractional coverage equatorward of 10° latitude when the enhanced convection enters the Pacific than a few weeks earlier, when the convection is over the Indian Ocean. The annual cycle in cirrus clouds around the base of the TTL is equatorially asymmetric, with more cirrus observed in the summer hemisphere. Higher in the TTL, the annual cycle in cirrus clouds is more equatorially symmetric, with a maximum in the boreal winter throughout most of the tropics. The ENSO signature in TTL cirrus is marked by a zonal shift of the peak cloudiness toward the central Pacific during El Niño and toward the Maritime Continent during La Niña.


Sign in / Sign up

Export Citation Format

Share Document