stable isotope dilution assays
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 8)

H-INDEX

24
(FIVE YEARS 0)

BMC Chemistry ◽  
2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Ola Lasekan ◽  
Fatma Dabaj ◽  
Megala Muniandy ◽  
Nurul Hanisah Juhari ◽  
Adeseye Lasekan

Abstract Background To evaluate the impact of cold fermentation time on bagel rolls, the key aroma-active compounds in the volatile fractions obtained from three different bagel rolls through solvent assisted flavor evaporation (SAFE) were sequentially characterized by an aroma extract dilution analysis (AEDA), quantified by stable isotope dilution and analyzed by odor activity values (OAVs) respectively. Results Findings revealed 40 aroma-active compounds with flavor dilution (FD) factor ranges of 2–1024. Of these, 22 compounds (FD ≥ 16) were quantified by stable isotope dilution assays (SIDA). Subsequent analysis of the 22 compounds by odor activity values (OAVs) revealed 14 compounds with OAVs ≥ 1 and the highest concentrations were obtained for 2,3-butanedione, 2-phenylethanol, 3-methylbutanal and acetoin respectively. Two recombination models of the bagels (i.e. 24 h and 48 h bagels) showed similarity to the corresponding bagels. Omission tests confirmed that 2,3-butanedione (buttery), acetoin (buttery), 2-acetyl-1-pyrroline (roasty), 5-methyl-2-furanmethanol (bread-like), (Z)-4-heptenal (biscuit-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, were the key aroma compounds. Additionally, acetic acid, butanoic acid, 2-phenylethanol (honey-like), 3-methylbutanoic acid, 2/3-methylbutanal, vanillin, 3-methylbutanol, methional were also important odorants of the bagel. Conclusion Whilst the long, cold fermented bagels exhibited roasty, malty, buttery, baked potato-like, smoky and biscuit-like notes, the control bagels produced similar but less intense odor notes.


Author(s):  
Sophie Scheibenzuber ◽  
Fabian Dick ◽  
Stefan Asam ◽  
Michael Rychlik

AbstractA multi-mycotoxin LC-MS/MS method was developed to quantify 13 free and modified Alternaria toxins in different beer types by applying a combination of stable-isotope dilution assays (SIDAs) and matrix-matched calibration. With limits of detection (LODs) between 0.03 µg/L (alternariol monomethyl ether, AME) and 5.48 µg/L (altenuene, ALT), limits of quantitation (LOQs) between 0.09 µg/L (AME) and 16.24 µg/L (ALT), and recoveries between 72 and 113%, we obtained a sensitive and reliable method, which also covers the emerging toxins alternariol-3-glucoside (AOH-3-G), alternariol-9-glucoside (AOH-9-G), alternariol monomethyl ether-3-glucoside (AME-3-G) and alternariol-3-sulfate (AOH-3-S) and alternariol monomethylether-3-sulfate (AME-3-S). Furthermore, 50 different beer samples were analyzed, showing no contamination with Alternaria toxins apart from tenuazonic acid (TeA) in concentrations between 0.69 µg/L and 16.5 µg/L. According to this study, the exposure towards TeA through beer consumption can be considered as relatively low, as the threshold of toxicological concern (TTC) value of 1500 ng/kg body weight per day might not be reached when consuming reasonable amounts of beer.


2021 ◽  
Author(s):  
Ola Lasekan ◽  
Fatma Dabaj ◽  
Megala Muniandy ◽  
Hanisah Juhari ◽  
Adeseye Lasekan

Abstract Background:To evaluate the impact of cold fermentation time on bagel rolls, the key aroma-active compounds in the volatile fractions obtained from three different bagel rolls through solvent assisted flavor evaporation (SAFE) were sequentially characterized by an aroma extract dilution analysis (AEDA), quantified by stable isotope dilution and analyzed by odor activity values (OAVs) respectively.. Results: Findings revealed Forty aroma-active compounds with flavor dilution (FD) factor ranges of 2 – 1024. Of these, 22 compounds (FD≥ 16) were quantified by stable isotope dilution assays (SIDA). Subsequent analysis of the 22 compounds by odor activity values (OAVs) revealed 14 compounds with OAVs ≥ 1 and the highest concentrations were obtained for 2,3-butanedione, 2-phenylethanol, 3-methylbutanal and acetoin respectively. Two recombination models of the bagels (i.e. 24 h and 48 h bagels) showed similarity to the corresponding bagels. Omission tests confirmed that 2,3-butanedione (buttery), acetoin (buttery), 2-acetyl-1-pyrroline (roasty), 5-methyl-2-furanmethanol (bread-like), (Z)-4-heptenal (biscuit-like) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, were the key aroma compounds. Additionally, acetic acid, butanoic acid, 2-phenylethanol (honey-like), 3-methylbutanoic acid, 2/3-methylbutanal, vanillin, 3-methylbutanol, methional were also important odorants of the bagel. Conclusion: Whilst the long, cold fermented bagels exhibited roasty, malty, buttery, baked potato-like, smoky and biscuit-like notes, the control bagels produced similar but less intense odor notes.


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1129
Author(s):  
Ola Lasekan ◽  
Fatma Dabaj

The key aroma constituents in the volatile fractions isolated FROM two differently processed fry breads by solvent-assisted flavor evaporation were characterized by an aroma extract dilution analysis (AEDA). Twenty-two compounds were identified with flavor dilution (FD) factor ranges of 2–516. Among them, 13 compounds (FD ≥ 16) were quantified by stable isotope dilution assays and analyzed by odor activity values (OAVs). Of these, 11 compounds had OAVs ≥ 1, and the highest concentrations were determined for δ-decalactone and 2,3-butanedione. Two recombination models of the fry breads showed similarity to the corresponding fry breads. Omission tests confirmed that aroma-active constituents, such as δ-decalactone (oily/peach), 2-acetyl-1-pyrroline (roasty/popcorn-like), 3-methylbutanal (malty), methional (baked potato-like), 2,3-butanedione (buttery), phenyl acetaldehyde (flowery), (E,E)-2,4-decadienal (deep-fried), butanoic acid, and 3-methylbutanoic acid, were the key aroma constituents of fry bread. In addition, 3-methoxy-4-vinylphenol (smoky) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone were also identified as important aroma constituents of fry bread.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0212255
Author(s):  
Lisa Striegel ◽  
Beate Brandl ◽  
Markus Kopp ◽  
Lukas Sam ◽  
Thomas Skurk ◽  
...  

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 511 ◽  
Author(s):  
Irene Thamm ◽  
Konrad Tiefenbacher ◽  
Michael Rychlik

The metabolism of the monoterpene α-thujone was investigated in humans after consumption of sage tea, by analyses of its metabolites 2-hydroxythujone, 4-hydroxythujone, and 7-hydroxythujone in urine. For the quantitation of α-thujone and its metabolites, stable isotope dilution assays were developed. Using d6-α-thujone as internal standard, we quantified α-thujone by solid phase microextraction GC-MS and the hydroxythujones with d6-2-hydroxythujone, d6-4-hydroxythujone, and d6-7-hydroxythujone after glucuronide/sulfate deconjugation by LC-MS/MS in urine. After the consumption of 575.0 µg α-thujone, the 4-hydroxythujone and 7-hydroxythujone were detectable in the urine of the volunteers under study, after liberation from their glucuronides/sulfates. The 2-Hydroxythujone was not present in any of the volunteer samples above its detection limit. α-Thujone was detectable in a low amount, with a maximum concentration of 94 ng/L for the volunteer with the highest dose of 14.3 µg/kg bw.


Sign in / Sign up

Export Citation Format

Share Document