scholarly journals A multiscale high-cycle fatigue-damage model for the stiffness degradation of fiber-reinforced materials based on a mixed variational framework

2022 ◽  
Vol 388 ◽  
pp. 114198
Author(s):  
Nicola Magino ◽  
Jonathan Köbler ◽  
Heiko Andrä ◽  
Fabian Welschinger ◽  
Ralf Müller ◽  
...  
2014 ◽  
Vol 941-944 ◽  
pp. 1477-1482
Author(s):  
Xu Tao Nie ◽  
Wan Hua Chen ◽  
Yuan Xing Wang

High-cycle fatigue damage analysis and life prediction is a most crucial problem in the research field of solid mechanics. Based on the thermodynamic potentials in the framework of thermodynamics a numerical method for high-cycle fatigue damage was studied and provided by using a two-scale damage model. Furthermore, according to the “jump-in-cycles” procedure the numerical simulation of high-cycle fatigue damage was implemented in a user subroutine of ABAQUS software. Finally, a numerical simulation instance of high-cycle fatigue damage was provided and compared with a set of test data, which indicates that the numerical simulation method presented is reasonable and applicable.


2016 ◽  
Vol 697 ◽  
pp. 658-663
Author(s):  
Rong Guo Zhao ◽  
Ya Feng Liu ◽  
Yong Zhou Jiang ◽  
Xi Yan Luo ◽  
Qi Bang Li ◽  
...  

The high cycle fatigue tests for smooth specimens of TC25 titanium alloy under different stress ratios are carried out on a MTS 809 Material Test Machine at a given maximum stress level of 917MPa at ambient temperature, the high cycle fatigue lifetimes for such alloy are measured, and the effects of stress amplitude and mean stress on high cycle fatigue life are analyzed. The initial resistance is measured at the two ends of smooth specimen of TC25 titanium alloy, every a certain cycles, the fatigue test is interrupted, and the current resistance values at various fatigue cycles are measured. The ratio of resistance change is adopted to characterize the fatigue damage evolution in TC25 titanium alloy, and a modified Chaboche damage model is applied to derive the fatigue damage evolution equation. The results show that the theoretical calculated values agree well with the test data, which indicates that the modified Chaboche damage model can precisely describe the accumulated damage in TC25 titanium alloy at high cycle fatigue under unaxial loading. Finally, the high cycle fatigue lifetimes for TC25 titanium alloy specimens at different strain hardening rates are tested at a given stress ratio of 0.1, the effect of strain hardening on fatigue life is investigated based on a microstructure analysis on TC25 titanium alloy, and an expression between fatigue life and strain hardening rate is derived


2020 ◽  
Vol 54 (21) ◽  
pp. 2837-2852
Author(s):  
Jörg Hohe ◽  
Monika Gall ◽  
Sascha Fliegener ◽  
Zalikha Murni Abdul Hamid

Objective of the present study is the definition of a continuum damage mechanics material model describing the degradation of fiber reinforced materials under fatigue loads up to final failure. Based on the linear elastic framework, a brittle damage model for fatigue conditions is derived, where the damage constitutes the only nonlinearity. The model accounts for damage effects by successive degradation of the elastic moduli. Assuming that material damage is driven by microplastic work, a stress-driven damage evolution equation is defined. For generality, a fully three-dimensional formulation on single ply level is employed. The model is implemented into a finite element program. In a validation against experimental data on filament-wound carbon fiber reinforced material, the model proves to provide a good numerical approximation of the damage during the cyclic loading history up to final material failure.


2013 ◽  
Vol 569-570 ◽  
pp. 1029-1035
Author(s):  
Magd Abdel Wahab ◽  
Irfan Hilmy ◽  
Reza Hojjati-Talemi

In this paper, Continuum Damage Mechanics (CDM) theory is applied to low cycle and high cycle fatigue problems. Damage evolution laws are derived from thermodynamic principles and the fatigue number of cycles to crack initiation is expressed in terms of the range of applied stresses, triaxiality function and material constants termed as damage parameters. Low cycle fatigue damage evolution law is applied to adhesively bonded single lap joint. Damage parameters as function of stress are extracted from the fatigue tests and the damage model. High cycle fatigue damage model is applied to fretting fatigue test specimens and is integrated within a Finite Element Analysis (FEA) code in order to predict the number of cycles to crack initiation. Fretting fatigue problems involve two types of analyses; namely contact mechanics and damage/fracture mechanics. The high cycle fatigue damage evolution law takes into account the effect of different parameters such as contact geometry, axial stress, normal load and tangential load.


Sign in / Sign up

Export Citation Format

Share Document