On the buckling and bending analysis of FG straight-sided quadrilateral nanoplates using a continuum mechanics-based surface elastic model

Author(s):  
AbolFazl Shahabodini ◽  
Bahman Ahmadi

In this research, an elastic model based on the continuum mechanics is developed to study the static behaviors of functionally graded (FG) arbitrary straight-sided quadrilateral nanoplates. The model is constructed in the framework of Gurtin-Murdoch’s surface and Mindlin’s plate theories to account for the surface energy and shear deformation effects, simultaneously. The variational differential quadrature (VDQ) method is used along with a mapping technique to do the discretization process in a variational framework by means of differential and integral operators. Consequently, a weak form of governing equations is obtained from the energy quadratic representation of the problem. The solution method is of a distinguished feature as it involves just the first-order derivative of the field components in the mapping and discretization. After assuring the effectiveness of presented model by doing comparative studies, the critical buckling load and static deflection of the FG nanoplates with different shapes in geometry are investigated considering the surface effects. It is found that the surface energies effect on the static behavior of the rectangular nanoplates is more significant as compared to the non-rectangular nanoplates.

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Haichao Li ◽  
Ning Liu ◽  
Fuzhen Pang ◽  
Yuan Du ◽  
Shuo Li

This paper presents an accurate solution method for the static and vibration analysis of functionally graded Reissner-Mindlin plate with general boundary conditions on the basis of the improved Fourier series method. In the theoretical formulations, the governing equations and the general elastic boundary equations are obtained by using Hamilton’s principle. The components of admissible displacement functions are expanded as an improved Fourier series form which contains a 2D Fourier cosine series and auxiliary function in the form of 1D series. The major role of the auxiliary function is to remove the potential discontinuities of the displacement function and its derivatives at the edges and ensure and accelerate the convergence of the series representation. The characteristic equations are easily obtained via substituting admissible displacement functions into governing equations and the general elastic boundary equations. Several examples are made to show the excellent accuracy and convergence of the current solutions. The results of this paper may serve as benchmark data for future research in related field.


2020 ◽  
Vol 37 ◽  
pp. 72-99
Author(s):  
A Shahabodini ◽  
R Ansari ◽  
H Rouhi

Abstract In this paper, a three-dimensional (3D) size-dependent formulation is developed for the free vibrations of functionally graded quadrilateral nanoplates subjected to thermal environment. The plate model is constructed within the frameworks of the Gurtin–Murdoch surface and the 3D elasticity theories. In this way, the effect of surface free energy and all the components of stress and strain tensors are considered without any initial assumption on them as there is no need to assume the variation of transverse normal stress inside the bulk material in advance. The variational differential quadrature approach and the mapping technique are applied to derive a discretized weak form of the governing equations. The present solution method bypasses the transformation and discretization of the higher order derivatives appearing in the equations of the strong form. The effects of surface stress, thermal environment, material gradient index and geometrical properties on the size-dependent vibrational behavior of quadrilateral nanoplates are investigated. It is observed that the thermal load intensifies the effect of surface free energy on the natural frequency of the nanoplates. The present model is exact in the extent of the continuum models and can be employed for structures with any thickness–span ratios.


Author(s):  
Jun Li ◽  
Martin Ostoja-Starzewski

This paper builds on the recently begun extension of continuum thermomechanics to fractal porous media that are specified by a mass (or spatial) fractal dimension D , a surface fractal dimension d and a resolution length scale R . The focus is on pre-fractal media (i.e. those with lower and upper cut-offs) through a theory based on a dimensional regularization, in which D is also the order of fractional integrals employed to state global balance laws. In effect, the governing equations are cast in forms involving conventional (integer order) integrals, while the local forms are expressed through partial differential equations with derivatives of integer order but containing coefficients involving D , d and R . This procedure allows a specification of a geometry configuration of continua by ‘fractal metric’ coefficients, on which the continuum mechanics is subsequently constructed. While all the derived relations depend explicitly on D , d and R , upon setting D =3 and d =2, they reduce to conventional forms of governing equations for continuous media with Euclidean geometries. Whereas the original formulation was based on a Riesz measure—and thus more suited to isotropic media—the new model is based on a product measure, making it capable of grasping local fractal anisotropy. Finally, the one-, two- and three-dimensional wave equations are developed, showing that the continuum mechanics approach is consistent with that obtained via variational energy principles.


2020 ◽  
Vol 10 (7) ◽  
pp. 2600
Author(s):  
Tho Hung Vu ◽  
Hoai Nam Vu ◽  
Thuy Dong Dang ◽  
Ngoc Ly Le ◽  
Thi Thanh Xuan Nguyen ◽  
...  

The present paper deals with a new analytical approach of nonlinear global buckling of spiral corrugated functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical shells subjected to radial loads. The equilibrium equation system is formulated by using the Donnell shell theory with the von Karman’s nonlinearity and an improved homogenization model for spiral corrugated structure. The obtained governing equations can be used to research the nonlinear postbuckling of mentioned above structures. By using the Galerkin method and a three term solution of deflection, an approximated analytical solution for the nonlinear stability problem of cylindrical shells is performed. The linear critical buckling loads and postbuckling strength of shells under radial loads are numerically investigated. Effectiveness of spiral corrugation in enhancing the global stability of spiral corrugated FG-CNTRC cylindrical shells is investigated.


2021 ◽  
pp. 107754632110004
Author(s):  
Hassan Afshari ◽  
Hossein Amirabadi

In this article, a comprehensive study is conducted on the free vibration analysis of rotating truncated conical shells reinforced with functionally graded agglomerated carbon nanotubes The shell is modeled based on the first-order shear deformation theory, and effective mechanical properties are calculated based on the Eshelby–Mori–Tanaka scheme along with the rule of mixture. By considering centrifugal and Coriolis accelerations and initial hoop tension, the set of governing equations is derived using Hamilton’s principle and is solved numerically using the differential quadrature method Convergence and accuracy of the presented model are confirmed and the effects of different parameters on the forward and backward frequencies of the rotating carbon nanotube-reinforced truncated conical shells are investigated.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2000 ◽  
Author(s):  
Mehrdad Massoudi ◽  
Tran X. Phuoc

Abstract In this paper we study the flow of granular materials between two horisontal flat plates where the top plate is moving with a constant speed. The constitutive relation used for the stress is based on the continuum model proposed by Rajagopal and Massoudi (1990), where the material parameters are derived using the kinetic theory model proposed by Boyle and Massoudi (1990). The governing equations are non-dimensionalized and the resulting system of non-linear differential equations is solved numerically using finite difference technique.


2000 ◽  
Author(s):  
Hiroshi Yamada ◽  
Tohru Takemasa ◽  
Takami Yamaguchi

Abstract To elucidate the orientation of stress fibers in a cultured endothelial cell under cyclic stretch, we hypothesized that a stress fiber aligns so as to minimize the summation of its length change under cyclic stretch, and that there is a limit in the sensitivity of cellular response to the mechanical stimulus. Results from numerical simulations based on the continuum mechanics describe the experimental observations under uniaxial stretch well. They give us an insight to the biological phenomenon of the orientation in stress fibers under biaxial stretch from the viewpoint of mechanical engineering.


Sign in / Sign up

Export Citation Format

Share Document