scholarly journals Effect of Conditioner Type and Downforce, and Pad Surface Micro-Texture on SiO2 Chemical Mechanical Planarization Performance

Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 258 ◽  
Author(s):  
Jeffrey McAllister ◽  
Calliandra Stuffle ◽  
Yasa Sampurno ◽  
Dale Hetherington ◽  
Jon Sierra Suarez ◽  
...  

Based on a previous work where we investigated the effect of conditioner type and downforce on the evolution of pad surface micro-texture during break-in, we have chosen certain break-in conditions to carry out subsequent blanket SiO2 wafer polishing studies. Two different conditioner discs were used in conjunction with up to two different conditioning downforces. For each disc-downforce combination, mini-marathons were run using SiO2 wafers. Prior to polishing, each pad was broken-in for 30 min with one of the conditioner-downforce combinations. The goal of this study was to polish wafers after this break-in to see how the polishing process behaved immediately after break-in. One of the discs used in this study produced similar micro-texture results at both downforces, which echoed the results seen in the mini-marathon. When comparing the different polishing results obtained from breaking-in the pad with the different discs used in this study, the coefficient of friction (COF) and SiO2 removal rate (RR) were uncorrelated in all cases. However, the use of different discs resulted in different COF and RR trends. The uncorrelated COF and RR, as well as the differing trends, were explained by pad micro-texture results (i.e. the differing amount of fractured, poorly supported pad asperity summits).

2007 ◽  
Vol 24-25 ◽  
pp. 155-159 ◽  
Author(s):  
Xue Feng Xu ◽  
B.X. Ma ◽  
Feng Chen ◽  
Wei Peng

In this paper, mixed slurries containing silica abrasives and polystyrene (PS) polymer particles in deionized water at pH 10.5 have been evaluated for silicon wafer polishing. By applying the theory of electric double layer model, the effect of the particle interactions in mixed slurry is investigated. Zeta potential measurements and TEM images have been used to show the formation of composite particles. The polishing mechanism with composite particles slurries is discussed. Polishing experiments with the mixed slurries formed by coating smaller (~30nm) abrasives onto softer and larger (~2000nm) polymer particles have shown the superior characteristic with higher removal rate and high surface quality.


2004 ◽  
Vol 816 ◽  
Author(s):  
Harald Jacobsen ◽  
Eric Stachowiak ◽  
Gerfried Zwicker ◽  
Wolfgang Lortz ◽  
Ralph Brandes

AbstractIn the work presented the coefficient of friction (COF) was firstly determined metrologically by a systematic assessment of motor currents for different products of pressure and velocity (p v). With all seven test slurries it could be shown that the inserted energy ECMP is proportional to the product of pressure and velocity. The COF of the parameter domain considered here does not depend on the inserted energy or the product of p v in a first approximation. For all tested slurries it was demonstrated that, both the COF and the removal rate (RR) behave analogously (low COF→ low RR).Measurements of the viscosity η have shown that η is not a constant in the shear rate range relevant for CMP. Using the obtained viscosity values a mean slurry film thickness in the range of 2,5 -C 6 μm could be calculated.


Author(s):  
Tetsuo OOKAWA ◽  
Masami MASUDA ◽  
Hirotaka SASAKI ◽  
Takashi NISHIGUCHI

2010 ◽  
Vol 148-149 ◽  
pp. 19-24
Author(s):  
Chao Hui Zhang ◽  
Hong Lei ◽  
Xiao Li Hu

Slurry preparation is of paramount importance in chemical mechanical planarization (CMP) process. It couples the combination effects of chemical and mechanical ones. In this paper, the characteristics of the slurry particles used in CMP are firstly modeled, which includes the size and the concentration with primary priority. And then, the model is validated by experiments during hard disk wafer polishing. The slurry prepared contributes to a high quality hard disk surface processed with CMP, which leads to low waviness Wa and roughness Ra with suitable material removal rate (MRR) as well. The study will surely lay a feasible foundation to the CMP mechanism.


Author(s):  
Goutam Chandra Karar ◽  
Nipu Modak

The experimental investigation of reciprocating motion between the aluminum doped crumb rubber /epoxy composite and the steel ball has been carried out under Reciprocating Friction Tester, TR-282 to study the wear and coefficient of frictions using different normal loads (0.4Kg, 0.7Kgand1Kg), differentfrequencies (10Hz, 25Hz and 40Hz).The wear is a function of normal load, reciprocating frequency, reciprocating duration and the composition of the material. The percentage of aluminum presents in the composite changesbut the other components remain the same.The four types of composites are fabricated by compression molding process having 0%, 10%, 20% and 30% Al. The effect of different parameters such as normal load, reciprocating frequency and percentage of aluminum has been studied. It is observed that the wear and coefficient of friction is influenced by the parameters. The tendency of wear goes on decreasing with the increase of normal load and it is minimum for a composite having 10%aluminum at a normal load of 0.7Kg and then goes on increasing at higher loads for all types of composite due to the adhesive nature of the composite. The coefficient of friction goes on decreasing with increasing normal loads due to the formation of thin film as an effect of heat generation with normal load.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4217
Author(s):  
Üsame Ali Usca ◽  
Mahir Uzun ◽  
Mustafa Kuntoğlu ◽  
Serhat Şap ◽  
Khaled Giasin ◽  
...  

Tribological properties of engineering components are a key issue due to their effect on the operational performance factors such as wear, surface characteristics, service life and in situ behavior. Thus, for better component quality, process parameters have major importance, especially for metal matrix composites (MMCs), which are a special class of materials used in a wide range of engineering applications including but not limited to structural, automotive and aeronautics. This paper deals with the tribological behavior of Cu-B-CrC composites (Cu-main matrix, B-CrC-reinforcement by 0, 2.5, 5 and 7.5 wt.%). The tribological characteristics investigated in this study are the coefficient of friction, wear rate and weight loss. For this purpose, four levels of sliding distance (1000, 1500, 2000 and 2500 m) and four levels of applied load (10, 15, 20 and 25 N) were used. In addition, two levels of sliding velocity (1 and 1.5 m/s), two levels of sintering time (1 and 2 h) and two sintering temperatures (1000 and 1050 °C) were used. Taguchi’s L16 orthogonal array was used to statistically analyze the aforementioned input parameters and to determine their best levels which give the desired values for the analyzed tribological characteristics. The results were analyzed by statistical analysis, optimization and 3D surface plots. Accordingly, it was determined that the most effective factor for wear rate, weight loss and friction coefficients is the contribution rate. According to signal-to-noise ratios, optimum solutions can be sorted as: the highest levels of parameters except for applied load and reinforcement ratio (2500 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 0 wt.%) for wear rate, certain levels of all parameters (1000 m, 10 N, 1.5 m/s, 2 h, 1050 °C and 2.5 wt.%) for weight loss and 1000 m, 15 N, 1 m/s, 1 h, 1000 °C and 0 wt.% for the coefficient of friction. The comprehensive analysis of findings has practical significance and provides valuable information for a composite material from the production phase to the actual working conditions.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1246
Author(s):  
Stefan Valkov ◽  
Dimitar Dechev ◽  
Nikolay Ivanov ◽  
Ruslan Bezdushnyi ◽  
Maria Ormanova ◽  
...  

In this study, we present the results of Young’s modulus and coefficient of friction (COF) of Ti–Ta surface alloys formed by electron-beam surface alloying by a scanning electron beam. Ta films were deposited on the top of Ti substrates, and the specimens were then electron-beam surface alloyed, where the beam power was varied from 750 to 1750 W. The structure of the samples was characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). Young’s modulus was studied by a nanoindentation test. The coefficient of friction was studied by a micromechanical wear experiment. It was found that at 750 W, the Ta film remained undissolved on the top of the Ti, and no alloyed zone was observed. By an increase in the beam power to 1250 and 1750 W, a distinguished alloyed zone is formed, where it is much thicker in the case of 1750 W. The structure of the obtained surface alloys is in the form of double-phase α’and β. In both surface alloys formed by a beam power of 1250 and 1750 W, respectively, Young’s modulus decreases about two times due to different reasons: in the case of alloying by 1250 W, the observed drop is attributed to the larger amount of the β phase, while at 1750 W is it due to the weaker binding forces between the atoms. The results obtained for the COF show that the formation of the Ti–Ta surface alloy on the top of Ti substrate leads to a decrease in the coefficient of friction, where the effect is more pronounced in the case of the formation of Ti–Ta surface alloys by a beam power of 1250 W.


2021 ◽  
Vol 11 (4) ◽  
pp. 1783
Author(s):  
Ming-Yi Tsai ◽  
Kun-Ying Li ◽  
Sun-Yu Ji

In this study, special ceramic grinding plates impregnated with diamond grit and other abrasives, as well as self-made lapping plates, were used to prepare the surface of single-crystal silicon carbide (SiC) wafers. This novel approach enhanced the process and reduced the final chemical mechanical planarization (CMP) polishing time. Two different grinding plates with pads impregnated with mixed abrasives were prepared: one with self-modified diamond + SiC and a ceramic binder and one with self-modified diamond + SiO2 + Al2O3 + SiC and a ceramic binder. The surface properties and removal rate of the SiC substrate were investigated and a comparison with the traditional method was conducted. The experimental results showed that the material removal rate (MRR) was higher for the SiC substrate with the mixed abrasive lapping plate than for the traditional method. The grinding wear rate could be reduced by 31.6%. The surface roughness of the samples polished using the diamond-impregnated lapping plate was markedly better than that of the samples polished using the copper plate. However, while the surface finish was better and the grinding efficiency was high, the wear rate of the mixed abrasive-impregnated polishing plates was high. This was a clear indication that this novel method was effective and could be used for SiC grinding and lapping.


Sign in / Sign up

Export Citation Format

Share Document