atractylodes japonica
Recently Published Documents


TOTAL DOCUMENTS

49
(FIVE YEARS 11)

H-INDEX

11
(FIVE YEARS 1)

Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3904
Author(s):  
So Young Eun ◽  
Yoon-Hee Cheon ◽  
Gyeong Do Park ◽  
Chong Hyuk Chung ◽  
Chang Hoon Lee ◽  
...  

Vigeo is a mixture of fermented extracts of Eleutherococcus senticosus Maxim (ESM), Achyranthes japonica (Miq.) Nakai (AJN), and Atractylodes japonica Koidzumi (AJK) manufactured using the traditional Korean nuruk fermentation method. Although the bioactive effects of ESM, AJN, and AJK have already been reported, the pharmacological effects of Vigeo have not been proven. Therefore, in this study, we investigated whether Vigeo had inhivitory effects on lipopolysaccharide (LPS)-induced inflammatory bone loss in vivo and receptor activator of nuclear factor-B ligand (RANKL)-induced osteoclastogenesis and the related mechanism in vitro. Vigeo administration conferred effective protection against bone loss induced by excessive inflammatory response and activity of osteoclasts in LPS-induced inflammatory osteoporosis mouse model. In addition, Vigeo significantly suppressed the formation of tartrate-resistant acid phosphatase-positive osteoclasts induced by RANKL and inhibited F-actin formation and bone resorbing activity without any cytotoxicity. Moreover, Vigeo significantly inhibited RANKL-induced phosphorylation of p38, ERK, JNK, IκB, and AKT and degradation of IkB. Additionally, Vigeo strongly inhibited the mRNA and protein expression of c-FOS and NFATc1 and subsequently attenuated the expression of osteoclast specific marker genes induced by RANKL. We demonstrated for the first time the anti-osteoporosis effect of Vigeo, suggesting that it could be a potential therapeutic candidate for the treatment of osteoclast-mediated inflammatory bone diseases.


2021 ◽  
Vol 6 (7) ◽  
pp. 2038-2040
Author(s):  
Mengmeng Shi ◽  
Hongbo Xie ◽  
Chunying Zhao ◽  
Linchun Shi ◽  
Jinxin Liu ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1327
Author(s):  
Bimal Kumar Ghimire ◽  
Jiwon Seo ◽  
Seung-Hyun Kim ◽  
Balkrishna Ghimire ◽  
Jae-Geun Lee ◽  
...  

Plant phytochemical accumulation is influenced by various external factors that change with the seasons (e.g., harvesting time). Atractylodes japonica, an important medicinal plant rich in bioactive compounds, is used to treat several human diseases. We analyzed the influence of harvesting time on phenolic compound concentration and antioxidant activity of A. japonica roots. We investigated the correlation between phenolic compound and minerals contents and antioxidant activity in different harvests. Total phenolic and flavonoid contents varied significantly with the harvesting time. Liquid chromatography–mass spectrometry/mass spectrometry (LC–MS/MS) analysis revealed significant changes in the concentration of various phenolics between harvests. The content of different types of phenolics were significantly higher in the samples collected in October. Among them, chlorogenic acids (133,833.30 µg/g dry weight of root extract) were the most dominant phytochemical compounds detected. Samples harvested in October had higher concentrations of flavonoids, including rutin, orientin, vitexin, and apigenin. Roots harvested in October had a significantly higher (p < 0.05) antioxidant activity than that of those harvested later. Root mineral concentrations also varied with the harvest time. The analysis revealed that macro elements such as Ca ad Mg contents were significantly increased with delaying harvesting time, whereas a different trend was observed for the microelements including Fe, Cu, Al, and As contents in the October harvest. We also found a significant relationship between antioxidant activity and phenolic compound content. The most abundant minerals (Ca, Mg, Mn, Fe, and Al) correlated positively with the antioxidant activity indicating that these elements and compounds may be associated with the A. japonica antioxidant potential. Furthermore, A. japonica root extracts inhibited NIH/3T3 cellular proliferation in a season- and dose-dependent manner. Hence, harvesting time influenced the antioxidant properties and phenolic compound accumulation of A. japonica roots. These results indicate that the harvesting time is essential for obtaining the specific phytochemicals.


2020 ◽  
Vol 10 (19) ◽  
pp. 7006
Author(s):  
Hyeon-ae Jang ◽  
Sun Young Kim ◽  
Yun Young Lim ◽  
Jong Lae Lim ◽  
Sangmun Shin

Experimental results pertaining to natural pharmaceutical complex products (NPCPs) often exhibit large variabilities in their associated response variables. To improve the quality of an NPCP, systemic studies (i.e., statistical analysis and mathematical optimization), including variability analysis and robust optimization, are often required. To this end, a systemic approach for an NPCP development process is proposed by integrating robust design and optimization methodologies. A quality function deployment method can be used to systematically define a standardized manufacturing process and relevant process variables for Chong Kun Dang (CKD)-497. Based on those variables, an experiment is designed using response surface methodology to mathematically estimate the output response functions associated with input variables. In addition, a design space (DS), which can guarantee the quality of an NPCP, is demonstrated by utilizing the overlaid contour plots of the estimated response functions. Finally, a CKD-497 case study is conducted for verification and validation.


2020 ◽  
Vol 8 (5) ◽  
Author(s):  
Jin‐Tae Jeong ◽  
Hee Chung ◽  
Bo‐Keun Ha ◽  
Jinsu Gil ◽  
Jeong‐Hoon Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document