scholarly journals Build-To-Specification Vanillin and Phloroglucinol Derived Biobased Epoxy-Amine Vitrimers

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2645
Author(s):  
Aratz Genua ◽  
Sarah Montes ◽  
Itxaso Azcune ◽  
Alaitz Rekondo ◽  
Samuel Malburet ◽  
...  

Epoxy resins are widely used in the composite industry due to their dimensional stability, chemical resistance, and thermo-mechanical properties. However, these thermoset resins have important drawbacks. (i) The vast majority of epoxy matrices are based on non-renewable fossil-derived materials, and (ii) the highly cross-linked molecular architecture hinders their reprocessing, repairing, and recycling. In this paper, those two aspects are addressed by combining novel biobased epoxy monomers derived from renewable resources and dynamic crosslinks. Vanillin (lignin) and phloroglucinol (sugar bioconversion) precursors have been used to develop bi- and tri-functional epoxy monomers, diglycidyl ether of vanillyl alcohol (DGEVA) and phloroglucinol triepoxy (PHTE) respectively. Additionally, reversible covalent bonds have been incorporated in the network by using an aromatic disulfide-based diamine hardener. Four epoxy matrices with different ratios of epoxy monomers (DGEVA/PHTE wt%: 100/0, 60/40, 40/60, and 0/100) were developed and fully characterized in terms of thermal and mechanical properties. We demonstrate that their performances are comparable to those of commonly used fossil fuel-based epoxy thermosets with additional advanced reprocessing functionalities.

Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3285
Author(s):  
Mora ◽  
Tayouo ◽  
Boutevin ◽  
David ◽  
Caillol

Most of the current amine hardeners are petro-sourced and only a few studies have focused on the research of bio-based substitutes. Hence, in an eco-friendly context, our team proposed the design of bio-based amine monomers with aromatic structures. This work described the use of the reductive amination with imine intermediate in order to obtain bio-based pluri-functional amines exhibiting low viscosity. The effect of the nature of initial aldehyde reactant on the hardener properties was studied, as well as the reaction conditions. Then, these pluri-functional amines were added to petro-sourced (diglycidyl ether of bisphenol A, DGEBA) or bio-based (diglycidyl ether of vanillin alcohol, DGEVA) epoxy monomers to form thermosets by step growth polymerization. Due to their low viscosity, the epoxy-amine mixtures were easily homogenized and cured more rapidly compared to the use of more viscous hardeners (<0.6 Pa s at 22 °C). After curing, the thermo-mechanical properties of the epoxy thermosets were determined and compared. The isophthalatetetramine (IPTA) hardener, with a higher number of amine active H, led to thermosets with higher thermo-mechanical properties (glass transition temperatures (Tg and Tα) were around 95 °C for DGEBA-based thermosets against 60 °C for DGEVA-based thermosets) than materials from benzylamine (BDA) or furfurylamine (FDA) that contained less active hydrogens (Tg and Tα around 77 °C for DGEBA-based thermosets and Tg and Tα around 45 °C for DGEVA-based thermosets). By comparing to industrial hardener references, IPTA possesses six active hydrogens which obtain high cross-linked systems, similar to industrial references, and longer molecular length due to the presence of two alkyl chains, leading respectively to high mechanical strength with lower Tg.


Proceedings ◽  
2020 ◽  
Vol 69 (1) ◽  
pp. 18
Author(s):  
Matthias Sebastian Windberger ◽  
Evgenia Dimitriou ◽  
Frank Wiesbrock

Polymers commonly have low thermal conductivity in the range of 0.1–0.2 W·m−1·K−1, which is a limiting factor for their usage in the course of continuously increasing miniaturization and heat generation in electronic applications. Two strategies can be applied to increase the transport of phonons in polymers: (i) the embedment of thermally conductive inorganic materials and (ii) the involvement of aromatic units enabling anisotropy by π–π stacking. In this study, the thermal conductivity of resins based on bisphenol A diglycidyl ether BADGE and 1,2,7,8-diepoxyoctane DEO was compared. DEO can be derived from pseudo-pelletierine, which is contained in the bark of the pomegranate tree. The epoxy compounds were cured with isophorone diamine IPDA, o-dianisidine DAN, or mixtures of the both diamines. Notably, isophorone diamine is derived from isophorone of which the latter naturally occurs in cranberries. The formulations were produced without filler or with 5 wt.-% of SiO2 nanoparticles. Significantly enhanced thermal conductivity in the range of 0.4 W·m−1·K−1 occurs only in DEO-based polymer networks that were cured with DAN (and do not contain SiO2 fillers). This observation is argued to originate from π–π stacking of the aromatic units of DAN enabled by the higher flexibility of the aliphatic carbon chain of DEO compared to that of BADGE. This assumption is further supported by the facts that significantly improved thermal conductivity occurs only above the glass-transition temperature and that nanoparticles appear to disrupt the π–π stacking of the aromatic groups. In summary, it can be argued that the bisphenol-free epoxy/amine resin with an epoxy compound derivable from natural resources shows favorably higher thermal conductivity in comparison to the petrol-based epoxy/amine resins.


2014 ◽  
Vol 775-776 ◽  
pp. 588-592
Author(s):  
Camila Rodrigues Amaral ◽  
Ruben Jesus Sanchez Rodriguez ◽  
Magno Luiz Tavares Bessa ◽  
Verônica Scarpini Cândido ◽  
Sergio Neves Monteiro

The correlation between the structural network of a diglycidyl ether of the bisphenol-A (DGEBA) epoxy resin, modified by two distinct aliphatic amines (tetraethylenepentamine TEPA and jeffamine D230), and its mechanical properties, was investigated as possible matrix for abrasive composites applications. Both flexural tests, to determine the yield stress and the elastic modulus, as well as impact tests to determine the notch toughness, were performed. The DGEBA/D230 presented the highest stiffness and toughness but lowest yield stress. This epoxy network also displayed a greater plastic deformation during fracture.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87013-87020 ◽  
Author(s):  
Kaiju Luo ◽  
Yan Wang ◽  
Junrong Yu ◽  
Jing Zhu ◽  
Zuming Hu

Aromatic furanic polyamides with relatively high molecular weight were synthesized, and good thermal stability and mechanical properties were demonstrated.


2017 ◽  
Vol 757 ◽  
pp. 62-67 ◽  
Author(s):  
Kritsanachai Leelachai ◽  
Supissara Ruksanak ◽  
Tarakol Hongkeab ◽  
Supakeat Kambutong ◽  
Raymond A. Pearson ◽  
...  

In this study, diglycidyl ether of bisphenol A (DGEBA) cured cycloaliphatic polyamine was modified with functionalized celluloses for improved thermal and mechanical properties. Three different types of surface-modified cellulose, polyacrylamide-g-cellulose (PGC), aminopropoxysilane-g-cellulose (SGC), and carboxymethyl cellulose (CMC), were investigated and used as reinforcing agents in epoxy resins. The storage modulus of these modified epoxy systems was found to significantly increase with addition of cellulose fillers (up to 1 wt. % cellulose content). An improved fracture toughness (KIC) was also observed with increasing cellulose loading content with PGC and SGC. Among the surface-modified celluloses, epoxy modified with SGC was found to have the highest fracture toughness followed by PGC and CMC at 1.0 wt.% cellulose addition due to the chemical surface compatibility. The toughening mechanisms of the cellulose/epoxy composites, measured by scanning electron microscopy (SEM), revealed that fiber-debonding, fiber-bridging, and fiber-pull out were responsible for increased toughness.


2018 ◽  
Vol 7 (2) ◽  
pp. 110-112
Author(s):  
Sasikumar Gnanasekaran ◽  
Sivasangari Ayyappan

Natural fibres namely sisal, jute, kenaf, hemp, abaca and banana are mainly used in industries for developing Natural fibres composites. They find many applications such as automobiles, furniture, packing and construction due to many merits such as their low cost, good mechanical properties, non-toxic, low weight, less damage to processing equipment, improved surface finish, abundant and renewable resources. The objective of this paper is to review the applications of various kenaf fibre reinforced polymer composites which will provide a base for further research in this area.


2012 ◽  
Vol 85 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Jeevan Prasad Reddy ◽  
Manjusri Misra ◽  
Amar Mohanty

In this research, switchgrass (SG) fiber-reinforced poly(trimethylene terephthalate) (PTT) biocomposites were prepared by extrusion followed by injection molding machine. The methylene-diphenyl-diisocyanate-polybutadiene (MDIPB) prepolymer was used to enhance the impact strength of the biocomposites. In addition, the polymeric methylene-diphenyl-diisocyanate (PMDI) compatibilizer was used to enhance the mechanical properties of the composites. The effect of compatibilizer on mechanical, crystallization melting, thermomechanical, melt flow index (MFI), morphological, and thermal stability properties of the composites was studied. Thermomechanical properties of the biocomposites were studied by dynamic mechanical analysis (DMA). Scanning electron microscopy (SEM) was used to observe the interfacial adhesion between the fiber and matrix. The results showed that MDIPB and PMDI have a significant effect on the mechanical properties of the composites. The impact strength of MDIPB- and PMDI-compatibilized composites was increased by 87 % when compared to the uncompatibilized composite.


Sign in / Sign up

Export Citation Format

Share Document