clearance rate constant
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

Toxics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 5
Author(s):  
Wenzhu Wu ◽  
Jing Xu ◽  
Yezhi Dou ◽  
Jia Yu ◽  
Deyang Kong ◽  
...  

This paper aims to understand the bioaccumulation of pyraoxystrobin in fish. Using a flow-through bioconcentration method, the bioconcentration factor (BCF) and clearance rate of pyraoxystrobin in zebrafish were measured. The measured BCF values were then compared to those estimated from three commonly used predication models. At the exposure concentrations of 0.1 μg/L and 1.0 μg/L, the maximum BCF values for pyraoxystrobin in fish were 820.8 and 265.9, and the absorption rate constants (K1) were 391.0 d−1 and 153.2 d−1, respectively. The maximum enrichment occurred at 12 d of exposure. At the two test concentrations, the clearance rate constant (K2) in zebrafish was 0.5795 and 0.4721, and the half-life (t1/2) was 3.84 d and 3.33 d, respectively. The measured BCF values were close to those estimated from bioconcentration predication models.


2013 ◽  
Vol 33 (11) ◽  
pp. 1770-1777 ◽  
Author(s):  
Shingo Ito ◽  
Kohta Matsumiya ◽  
Sumio Ohtsuki ◽  
Junichi Kamiie ◽  
Tetsuya Terasaki

The purpose of the present study was to estimate the relative contributions of degradation and brain-to-blood elimination processes to the clearance of microinjected human amyloid-β peptide(1-40) (hAβ(1-40)) from mouse cerebral cortex, using a solid-phase extraction method together with a newly developed ultraperformance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) quantitation method for intact hAβ(1-40). The clearance rate constant of hAβ(1-40) in mouse cerebral cortex was determined to be 3.21 × 10−2/min under conditions where the saturable brain-to-blood elimination process across the blood–brain barrier (BBB) was expected to be saturated. Thus, this clearance rate constant should mainly reflect degradation. The [125I]hAβ(1-40) elimination rate across the BBB under nonsaturating conditions was determined to be 1.48 × 10−2/min. Inhibition studies suggested that processes sensitive to insulin and phosphoramidon, which inhibit neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme, are involved not only in degradation, but also in elimination of hAβ(1-40). In conclusion, our results suggest a dominant contribution of degradation to cerebral hAβ(1-40) clearance, and also indicate that a sequential process of degradation and elimination of degradation products is involved in cerebral hAβ(1-40) clearance.


2009 ◽  
Vol 36 (8) ◽  
pp. 877-882 ◽  
Author(s):  
Raihan Hussain ◽  
Takashi Kudo ◽  
Testuya Tsujikawa ◽  
Masato Kobayashi ◽  
Yasuhisa Fujibayashi ◽  
...  

1998 ◽  
Vol 18 (12) ◽  
pp. 1365-1377 ◽  
Author(s):  
Keith S. St. Lawrence ◽  
Ting-Yim Lee

Using the adiabatic approximation, which assumes that the tracer concentration in parenchymal tissue changes slowly relative to that in capillaries, we derived a time-domain, closed-form solution of the tissue homogeneity model. This solution, which is called the adiabatic solution, is similar in form to those of two-compartment models, Owing to its simplicity, the adiabatic solution can be used in CBF experiments in which kinetic data with only limited time resolution or signal-to-noise ratio, or both, are obtained. Using computer simulations, we investigated the accuracy and the precision of the parameters in the adiabatic solution for values that reflect 2H-labeled water (D2O) clearance from the brain (see Part II). It was determined that of the three model parameters, (1) the vascular volume ( Vi), (2) the product of extraction fraction and blood flow ( EF), and (3) the clearance rate constant ( kadb), only the last one could be determined accurately, and therefore CBF must be determined from this parameter only. From the error analysis of the adiabatic solution, it was concluded that for the D2O clearance experiments described in Part II, the coefficient of variation of CBF was approximately 7% in gray matter and 22% in white matter.


1989 ◽  
Vol 67 (5) ◽  
pp. 1850-1854 ◽  
Author(s):  
J. A. Cooper ◽  
A. B. Malik

We compared the pulmonary transvascular fluxes of transferrin and albumin in the intact sheep lung. Anesthetized sheep were prepared with lung lymph fistulas. The vascular blood pool was marked with 99mTc-erythrocytes, autologous transferrin was labeled with 113mIn, and albumin was labeled with 125I. Samples of blood, plasma, lymph, and lung were obtained up to 180 min after tracer infusion. Lymph tissue radioactivities were corrected for the intravascular component and expressed as extravascular-to-plasma concentration ratios. Clearance of transferrin and albumin from the plasma space followed a two-compartment model. The clearance rate constant was 2.1 +/- 0.1 x 10(-3) min for albumin and 2.4 +/- 0.1 x 10(-3) min for transferrin (P less than 0.05). Lymph-to-plasma ratios for albumin and transferrin were not different. However, the extravascular-to-plasma ratio for albumin was greater than transferrin (P less than 0.05). The lymph and lung data were deconvoluted for the plasma input function and fit to a two-compartment model. The results indicate that albumin and transferrin have similar permeabilities across the vascular barrier but have different pulmonary circulation to lymph kinetics because the extravascular volume of distribution of albumin is greater than transferrin.


1979 ◽  
Vol 36 (3) ◽  
pp. 247-254 ◽  
Author(s):  
Gareth C. H. Harding ◽  
W. Peter Vass

A simple exponential model is used to interpret the simultaneous uptake and clearance of p,p′-DDT by euphausiids and copepods to and from seawater,[Formula: see text]where [C] and [W] are the concentrations in the organism and seawater, respectively. The clearance rate constant for euphausiids, kj = 0.043/d, is not significantly different from that observed for copepods, 0.048/d. No trend in ki values is detected over the range of p,p′-DDT concentrations in seawater used, 27.8–1388 ng/L. Furthermore, there is a great deal of overlap in the uptake rate constant values between organisms. Uptake rate constants range from 0.76 to 1.21 × 104/d for euphausiids and from 1.04 to 2.51 × 104/d for copepods. There appears to be no need to use a surface-area term if the concentration of p,p′-DDT in the organism is expressed per unit dry weight even though the euphausiids are 2 orders of magnitude larger than copepods. Knowing levels of ΣDDT present in planktonic crustaceans in nature, back calculations suggest that there must be [Formula: see text] ΣDDT/L in seawater. A considerable amount of the ΣDDT reported in seawater must therefore be unavailable to plankters because it is "bound" to particles. Key words: p,p′-DDT, uptake, clearance, surface area, euphausiids, copepods


Sign in / Sign up

Export Citation Format

Share Document