mobile observation
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 10)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 14 (11) ◽  
pp. 7069-7078
Author(s):  
Wenying He ◽  
Hongbin Chen ◽  
Yuejian Xuan ◽  
Jun Li ◽  
Minzheng Duan ◽  
...  

Abstract. Large microwave surface emissivities with a highly heterogeneous distribution and the relatively small hydrometeor signal over land make it challenging to use satellite microwave data to retrieve precipitation and to be assimilated into numerical models. To better understand the microwave emissivity over land surfaces, we designed and established a ground observation system for the in situ observation of microwave emissivities over several typical surfaces. The major components of the system include a dual-frequency polarized ground microwave radiometer, a mobile observation platform, and auxiliary sensors to measure the surface temperature and soil temperature and moisture; moreover, observation fields are designed comprising five different land surfaces. Based on the observed data from the mobile system, we preliminarily investigated the variations in the surface microwave emissivity over different land surfaces. The results show that the horizontally polarized emissivity is more sensitive to land surface variability than the vertically polarized emissivity is: the former decreases to 0.75 over cement and increases to 0.90 over sand and bare soil and up to 0.97 over grass. The corresponding emissivity polarization difference is obvious over water (>0.3) and cement (approximately 0.25) but reduces to 0.1 over sand and 0.05 over bare soil and almost 0.01 or close to zero over grass; this trend is similar to that of the Tb polarization difference. At different elevation angles, the horizontally/vertically polarized emissivities over land surfaces obviously increase/slightly decrease with increasing elevation angles but exhibit the opposite trend over water.


2021 ◽  
Author(s):  
Wenying He ◽  
Hongbin Chen ◽  
Yuejian Xuan ◽  
Jun Li ◽  
Minzheng Duan

Abstract. Large microwave surface emissivities with a highly heterogeneous distribution make it challenging to use satellite microwave data to retrieve precipitation and to be assimilated into numerical models over land. To better understand the microwave emissivity over land surfaces, we designed and established a ground observation system for the in situ observation of microwave emissivities over several typical surfaces. The major components of the system include a dual-frequency polarized ground microwave radiometer, a mobile observation platform, and auxiliary sensors to measure the surface temperature and soil temperature and moisture; moreover, observation fields are designed comprising five different land surfaces. Based on the observed data from the mobile system, we preliminarily investigated the variations in the surface microwave emissivity over different land surfaces. The results show that the horizontally polarized emissivity is more sensitive to land surfaces than is the vertically polarized emissivity: the former decreases to 0.75 over cement and increases to 0.90 over sand and bare soil and up to 0.97 over grass. The corresponding emissivity polarization difference is obvious over water (> 0.3) and cement (approximately 0.25) but reduces to 0.1 over sand and 0.05 over bare soil and almost 0.01 or close to zero over grass; this trend is similar to that of the Tb polarization difference. At different elevation angles, the horizontally/vertically polarized emissivities over land surfaces obviously increase/slightly decrease with increasing elevation angle but exhibit the opposite trend over water.


2021 ◽  
Author(s):  
Gianluca Di Natale ◽  
Marco Barucci ◽  
Claudio Belotti ◽  
Giovanni Bianchini ◽  
Francesco D'Amato ◽  
...  

Abstract. The longwave downwelling spectral radiance measurements performed by means of the Far-Infrared Radiation Mobile Observation System (FIRMOS) spectrometer at the summit of the Mt. Zugspitze (German Alps) in the Winter 2018–2019, allowed to retrieve the optical and micro-physical properties of ice, mixed and water clouds, showing a good agreement of the statistical relationship between the ice water path and the ice optical depth with the ones from previous works. In this paper the optical depths retrieved from FIRMOS are initially compared with selected cases calculated from backscattering Light Detection And Ranging (LiDAR) data by using a transmittance method. Then, in order to compare the whole FIRMOS dataset, the power-law relationship between backscattering and extinction is used to apply the Klett method and automatize the routine. Minimizing the root mean square differences, the exponent of the relationship, the so called backscatter-extinction coefficient ratio, is assessed to be 0.85 with a variabiliy in the range 0.60–1.10 for ice clouds and 0.50 with a variability within 0.30–0.70 for mixed and water clouds.


2021 ◽  
Vol 268 ◽  
pp. 115645
Author(s):  
Stefano Crocchianti ◽  
Simone Del Sarto ◽  
Maria Giovanna Ranalli ◽  
Beatrice Moroni ◽  
Silvia Castellini ◽  
...  

2020 ◽  
Author(s):  
Fengyang Wang ◽  
Renzhi Hu ◽  
Pinhua Xie ◽  
Yihui Wang ◽  
Shengrong Lou ◽  
...  

<p>Hydroxyl (OH) play an essential role in atmospheric chemistry. OH radical is an indicator of atmospheric oxidation and self-purification, which determines the removal of most trace gases in the atmosphere, such as CO, SO<sub>2</sub>, NO<sub>2</sub>, CH<sub>4</sub> and other volatile organic compounds (VOCs). A ground-based system for measurement of tropospheric OH radical by Laser Induced Fluorescence technique (AIOFM-LIF) was developed and integrated into a mobile observation platform for field observation. Ambient air expands through a 0.4 mm nozzle to low pressure. OH radical is irradiated by the 308 nm laser pulse at a repetition rate of 8.5 kHz, accompanying the release fluorescence of the A<sup>2</sup>Σ<sup>+</sup>(v’=0)—X<sup>2</sup>Π<sub>i</sub>(v’’=0) transition at 308 nm with the resultant fluorescence being detected by gated photon counting. The detection sensitivity of AIOFM-LIF system was calibrated by a portable standard OH radical source based on water photolysis-ozone actinometry. Following laboratory and field calibrations to characterise the instrument sensitivity, OH radical detection limits were (1.84±0.26) × 10<sup>5</sup> cm<sup>-3</sup> and (3.69±0.52) × 10<sup>5</sup> cm<sup>-3</sup> at night and noon, respectively. During “A comprehensive STudy of the Ozone foRmation Mechanism in Shenzhen” (STORM) campaign, AIOFM-LIF system was deployed in Shenzhen, China, and OH radical concentration was obtained validly except for the rainy days. Mean diurnal variation of HOx radical concentration was obtained, and the peak was 6.6×10<sup>6</sup> cm<sup>-3</sup> which appeared around 12:00 at noon. A general good agreement of OH radical concentration with j(O<sup>1</sup>D) was observed with a high correlation (R<sup>2</sup> =0.77), which illustrates that photolysis of ozone is an important source of OH radical during this campaign. A box model was applied to simulate the concentrations of OH at this field site, the primary production of OH radical was generally dominated by photolysis of O<sub>3</sub>, HONO, HCHO, while the other production was contributed by calculated species (OVOCs).</p>


2020 ◽  
Vol 237 ◽  
pp. 03025
Author(s):  
Jing Gao ◽  
Xu Wang ◽  
Yuefeng Zhao ◽  
Junyong Zhao

This paper first studies the advantages and main observation methods of atmospheric particulate matter lidar in Regional large-scale measurement, and then discusses the measurement principle of lidar and two commonly used methods for inversion of aerosol extinction coefficient.Finally, the mobile observation system consisting of lidar-assisted vehicle particle monitor is used. Anping County is used as the research area.The lidar data of Anping County on September 15 to September 20, 2017 are obtained by means of the combination of navigation and fixed vertical monitoring.The results of fixed detection showes that foreign pollutants begin to be imported around 10 pm on the 15th, and the superimposed pollutants peakes around 2 pm on the 16th.The concentration of particulate matter gradually decreased after 2 pm on the 16th, which is in line with the trend of air quality rising first and then falling in accordance with the trend of the Ministry of Environmental Protection.According to the particle trajectory tracking map of the navigation area, the contaminant transport was analyzed Combined with the meteorological conditions at that time.


Sign in / Sign up

Export Citation Format

Share Document