alteration halo
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 7)

H-INDEX

8
(FIVE YEARS 0)

Geosciences ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 408
Author(s):  
Olga Yakubovich ◽  
Ilya Vikentyev ◽  
Ekaterina Ivanova ◽  
Mary Podolskaya ◽  
Ivan Sobolev ◽  
...  

We report on the application of the U-Th-He method for the direct dating of pyrite from the alteration halo of the Novogodnee-Monto Au-Fe-skarn deposit, Polar Urals. The deposit is genetically related to the formation of volcanogenic complexes of the Ural Paleozoic belt. A modification of the original methodology for measuring U, Th and He isotopes in a single grain allowed us to determine a U-Th-He age of 382 ± 8 Ma (2σ) based on six pyrite samples from the altered rocks of the deposit (U mass fraction ~0.2 mg/kg; Th/U ~ 3.5; 4He specific volume ~ 10−5 cm3·STP·g−1). This age is consistent with estimates of the age of ore formation and coeval with the end of the period of island arc magmatic activity. Our results indicate that U-Th-He dating for pyrite samples of ~1 mg in weight from the hydrothermal-metasomatic halo of ore bodies is possible, providing a crucial next step in the development of U-Th-He pyrite geochronology.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1024
Author(s):  
Xiaoxia Song ◽  
Hongtao Ma ◽  
Benjamin M. Saalidong ◽  
Kaijie Li

A suite of coal samples near a diabase dike were collected to investigate the petrographic, mineralogical, and geochemical characteristics of thermally altered coal in Datong Coalfield, China. Proximate analysis, vitrinite reflectance measurement, and petrographic analysis were applied to identify and characterize the alteration halo; optical microscope observation, qualitative X-ray diffractometry, and SEM-EDS were applied to study the phases, occurrence, and composition of minerals; XRF, ICP-MS, and AFS were applied to determine concentrations of major and trace elements; and the occurrence modes of elements were studied by correlation and hierarchical cluster analysis as well as SEM-EDS. The results demonstrated that the 3.6 m dike has caused an alteration halo of approximately 2 m in diameter. In addition, the thermally altered coals were characterized by high vitrinite reflectance, low volatile matter, and the occurrence of thermally altered organic particles. Dolomite and ankerite in the thermally altered coal may be derived from hydrothermal fluids, while muscovite and tobelite may be transformed from a kaolinite precursor. The average concentration of Sr in the Tashan thermally altered coal reached 1714 μg/g, which is over 12 times that of the Chinese coal; the phosphate minerals and Sr-bearing kaolinite account for this significant enrichment. The cluster analysis classified elements with geochemical associations into four groups: group 1 and 2 were associated with aluminosilicates, clays, and carbonates and exhibited enrichment in the coal/rock contact zone, indicating that the dike may be the source of the elements; group 3 included P2O5, Sr, Ba, and Be, which fluctuate in coals, suggesting that their concentrations were influenced by multiple-factors; group 4 did not manifest obvious variations in coals, implying that the coal itself was the source.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 729
Author(s):  
Bin Wu ◽  
Christophe Bonnetti ◽  
Yue Liu ◽  
Zhan-Shi Zhang ◽  
Guo-Lin Guo ◽  
...  

The Guangshigou deposit is the largest pegmatite-type uranium deposit in the Shangdan domain of the North Qinling Orogenic Belt, which is characterized by the enrichment of uraninite hosted in biotite granitic pegmatites. At Guangshigou, uraninite commonly occurs as mineral inclusions in quartz, K-feldspar and biotite or in interstices of these rock-forming minerals with magmatic characteristics (e.g., U/Th < 100, high ThO2, Y2O3 and REE2O3 contents and low concentrations of CaO, FeO and SiO2). It crystallized at 407.6 ± 2.9 Ma from fractionated calc-alkaline high-K pegmatitic melts under conditions of 470–700 °C and 2.4–3.4 kbar as deduced by the compositions of coexisting peritectic biotite. The primary uranium mineralization took place during the Late Caledonian post-collisional extension in the North Qinling Orogen. After this magmatic event, uraninite has experienced multiple episodes of fluid-assisted metasomatism, which generated an alteration halo of mineral assemblages. The alteration halo (or radiohalo) was the result of the combined effects of metamictization and metasomatism characterized by an assemblage of goethite, coffinite and an unidentified aluminosilicate (probably clay minerals) around altered uraninite. This fluid-assisted alteration was concomitant with the albitization of K-feldspar subsequently followed by the coffinitization of uraninite during the major period of 84.9–143.6 Ma, as determined by U-Th-Pb chemical ages. Further investigations revealed that the metasomatic overprinting on uraninite initially and preferentially took place along microcracks or cavities induced by metamictization and promoted their amorphization, followed by the release of U and Pb from structure and the incorporation of K, Ca and Si from the fluids, finally resulting in various degrees of uraninite coffinitization. The released U and Pb were transported by alkali-rich, relatively oxidizing fluids and then re-precipitated locally as coffinite and an amorphous U-Pb-rich silicate under low to moderate temperature conditions (85–174 °C). The compositional changes in primary uraninite, its structure amorphization together with the paragenetic sequence of secondary phases, therefore, corroborate a combined result of intense metamictization of uraninite and an influx of alkali–metasomatic fluids during the Late Mesozoic Yanshanian magmatic event in the region. Hence, the remobilization and circulation of uranium in the North Qinling Orogen was most likely driven by post-Caledonian magmatism and hydrothermal activities related to large-scale tectonic events. In this regards, Paleozoic pegmatite-type uranium mineralization may represent a significant uranium source for Mesozoic hydrothermal mineralization identified in the Qinling Orogenic Belt.


2020 ◽  
Author(s):  
Sam C. Spinks ◽  
Mark A. Pearce ◽  
Margaux Le Vaillant ◽  
David Fox ◽  
Ian M. Tyler ◽  
...  

Abstract Recently discovered Au in boulder conglomerate between the Mesoarchean West Pilbara superterrane basement and the overlying volcano-sedimentary stratigraphy of the Neoarchean Fortescue Group in Western Australia has renewed comparisons with the Witwatersrand conglomerate Au deposits in South Africa. As such, this has reignited the question of the Pilbara and Kaapvaal cratons being linked as part of the postulated Vaalbara continent during the Archean. However, little is known about the origin of the Pilbara conglomerate Au and its host conglomerates, as they are hitherto unstudied, and their formation and/or source is uncertain. Here we present a detailed study on the textures, composition, and sedimentology of one newly discovered Pilbara conglomerate Au deposit at the base of the Neoarchean Fortescue Group in the northwestern Pilbara craton. The Pilbara conglomerate Au occurrences are characteristically Ag-bearing but Hg-poor polycrystalline discoid masses that are overgrown by Au-poor chloritic halos, which are further enveloped by a hydrothermal alteration halo of disseminated Au within chlorite. Both the discoids and the auriferous chlorite halo are Ag bearing, with up to ~9 wt % Ag, consistent with a hydrothermal (orogenic) origin. The discoids do not display any physical or chemical evidence for sedimentary transport; thus, their formation (placer versus hydrothermal) remains unclear. However, the position of the Au in the conglomerate, limited to the basal section of the conglomerate, is difficult to account for in a purely hydrothermal deposit model. We argue the Pilbara conglomerate Au represents a modified placer deposit from a primary orogenic Au source, with surface evidence for sedimentation removed by partial dissolution during later hydrothermal alteration in the host conglomerate and the crystalline basement. While the basal Fortescue Group conglomerate Au shares commonalities with the time equivalent (&gt;~2.7 Ga) Venterspost Conglomerate Formation, which overlies the Witwatersrand Supergroup, inconsistencies remain, with different Au chemistries and tectonic, magmatic, sedimentary, and metamorphic-metallogenic histories of the Pilbara and Kaapvaal cratons prior to deposition of the &gt;2.7 Ga conglomerate sequences. This collectively indicates the drivers of Au metallogenesis and ultimate Au deposition in conglomerate facies were fundamentally different in the Pilbara and Kaapvaal cratons.


Minerals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 685
Author(s):  
Nicola Mondillo ◽  
Maria Boni ◽  
Giuseppina Balassone ◽  
Nigel Forrester ◽  
Francesco Putzolu ◽  
...  

The Kihabe Zn-Pb-V > (Cu-Ag-Ge) prospect is located at the boundary between Namibia and Botswana (Aha Hills, Ngamiland District) in a strongly deformed Proterozoic fold belt, corresponding to the NE extension of the Namibian Damara Orogen. The Kihabe prospect contains Zn-Pb resources of 14.4 million tonnes at 2.84% zinc equivalent, Ag resources of 3.3 million ounces, and notable V-Ge amounts, still not evaluated at a resource level. The ores are represented by a mixed sulfide–nonsulfide mineralization. Sulfide minerals consist mainly of sphalerite, galena and pyrite in a metamorphic quartzwacke. Among the nonsulfide assemblage, two styles of mineralization occur in the investigated samples: A first one, characterized by hydrothermal willemite and baileychlore, and a second one consisting of supergene smithsonite, cerussite, hemimorphite, Pb-phosphates, arsenates and vanadates. Willemite is present in two generations, which postdate sulfide emplacement and may also form at their expenses. These characteristics are similar to those observed in the willemite occurrences of the nearby Otavi Mountainland, which formed through hydrothermal processes, during the final stages of the Damara Orogeny. The formation of the Kihabe willemite is likely coeval. Baileychlore is characterized by textures indicating direct precipitation from solutions and dissolution–crystallization mechanisms. Both processes are typical of hydrothermal systems, thus suggesting a hydrothermal genesis for the Kihabe Zn-chlorite as well. Baileychlore could represent an alteration halo possibly associated either with the sulfide or with willemite mineralization. The other nonsulfide minerals, smithsonite, cerussite, various Pb-phosphates and vanadates, are clearly genetically associated with late phases of supergene alteration, which overprinted both the sulfide and the willemite- and baileychlore-bearing mineralizations. Supergene alteration probably occurred in this part of Botswana from the Late Cretaceous to the Miocene.


2019 ◽  
Vol 219 (3) ◽  
pp. 1851-1865
Author(s):  
Seogi Kang ◽  
Douglas W Oldenburg

SUMMARY We provide a two-stage approach to extract spectral induced polarization (SIP) information from time-domain IP data. In the first stage we invert dc data to recover the background conductivity. In the second, we solve a linear inverse problem and invert all time channels simultaneously to recover the IP parameters. The IP decay curves are represented by a stretched exponential (SE) rather than the traditional Cole–Cole model, and we find that defining the parameters in terms of their logarithmic values is advantageous. To demonstrate the capability of our simultaneous SIP inversion we use synthetic data simulating a porphyry mineral deposit. The challenge is to image a mineral body that is hosted within an alteration halo having the same chargeability but a different time constant. For a 2-D problem, we were able to distinguish the body using our simultaneous inversion but we were not successful in using a sequential (or conventional) SIP inversion approach. For the 3-D problem we recovered 3-D distributions of the SIP parameters and used those to construct a 3-D rock model having four rock units. Three chargeable units were distinguished. The compact mineralization zone, having a large time constant, was distinguished from the circular alteration halo that had a small time constant. Finally, to promote the use of the SIP technique, and to have further development of SIP inversion, all examples presented in this paper are available in our open source resources (https://github.com/simpeg-research/kang-2018-spectral-inducedpolarization).


2019 ◽  
Vol 98 ◽  
pp. 13002
Author(s):  
Richard B. Wanty ◽  
Andrew H. Manning ◽  
Michaela R. Johnson ◽  
Philip L. Verplanck

From 1997 to the present, the U.S. Geological Survey and other agencies have been collecting water samples for chemical analyses on Mount Emmons in central Colorado, USA. The geology of Mount Emmons is dominated by Upper Cretaceous to Paleogene sediments of marine to continental origin, with felsic intrusive rocks interrupting the sedimentary block. Extensive sulphide-rich alteration accompanied the intrusive events and forms an alteration halo in the sediments. Weathering of these sulphide minerals has led to numerous springs and seeps with a naturally low pH and high concentrations of metals, especially Fe and Zn. Superimposed on the natural geochemical signature are acid, metal-rich drainages from several mines and drill holes. Thus, streams on Mt. Emmons have a mix of natural and anthropogenic metal sources. Nearly 450 samples compose the database, with numerous sample locations replicated from the late 1990s to the present. Although there does not appear to be any temporal pattern in the data, consistent spatial variations are observed that allow us to characterize the natural and anthropogenic water sources.


Sign in / Sign up

Export Citation Format

Share Document