multipartite system
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 10)

H-INDEX

5
(FIVE YEARS 2)

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Zhe Ding ◽  
Ran Liu ◽  
Chandrashekar Radhakrishnan ◽  
Wenchao Ma ◽  
Xinhua Peng ◽  
...  

AbstractQuantum coherence is the most fundamental of all quantum quantifiers, underlying other well-known quantities such as entanglement. It can be distributed in a multipartite system in various ways—for example, in a bipartite system it can exist within subsystems (local coherence) or collectively between the subsystems (global coherence), and exhibits a trade-off relation. In this paper, we experimentally verify these coherence trade-off relations in adiabatically evolved nuclear spin systems using an NMR spectrometer. We study the full set of coherence trade-off relations between the original state, the bipartite product state, the tripartite product state, and the decohered product state. We also experimentally verify the monogamy inequality and show that both the quantum systems are polygamous during the evolution. We find that the properties of the state in terms of coherence and monogamy are equivalent. This illustrates the utility of using coherence as a characterization tool for quantum states.


2020 ◽  
Vol 34 (26) ◽  
pp. 2050237
Author(s):  
H. Baba ◽  
W. Kaydi ◽  
M. Daoud ◽  
M. Mansour

We study the entanglement of formation and the quantum discord contained in even and odd multipartite [Formula: see text]-spin coherent states. The key element of this investigation is the fact that a single [Formula: see text]-spin coherent state is viewed as comprising [Formula: see text] qubit states. We compute the quantum correlations present in the n even and odd [Formula: see text]-spin coherent states by considering all possible bipartite splits of the multipartite system. We discuss the different bi-partition schemes of quantum systems and we examine in detail the conservation rules governing the distribution of quantum correlations between the different qubits of the multipartite system. Finally, we derive the explicit expressions of quantum correlations present in even and odd spin coherent states decomposed in four spin sub-systems. We also analyze the properties of monogamy and we show in particular that the entanglement of the formation and the quantum discord obey the relation of monogamy only for even multipartite [Formula: see text]-spin coherent states.


Author(s):  
Gerd Niestegge

Various reconstructions of finite-dimensional quantum mechanics result in a formally real Jordan algebra A and a last step remains to conclude that A is the self-adjoint part of a C*-algebra. Using a quantum logical setting, it is shown that this can be achieved by postulating that there is a locally tomographic model for a composite system consisting of two copies of the same system. Local tomography is a feature of classical probability theory and quantum mechanics; it means that state tomography for a multipartite system can be performed by simultaneous measurements in all subsystems. The quantum logical definition of local tomography is sufficient, but it is less restrictive than the prevalent definition in the literature and involves some subtleties concerning the so-called spin factors.


2020 ◽  
Vol 226 ◽  
pp. 02013
Author(s):  
Vladimir Kornyak

The multipartite quantum systems are of particular interest for the study of such phenomena as entanglement and non-local correlations. The symmetry group of the whole multipartite system is the wreath product of the group acting in the “local” Hilbert space and the group of permutations of the constituents. The dimension of the Hilbert space of a multipartite system depends exponentially on the number of constituents, which leads to computational difficulties. We describe an algorithm for decomposing representations of wreath products into irreducible components. The C implementation of the algorithm copes with representations of dimensions in quadrillions. The program, in particular, builds irreducible invariant projectors in the Hilbert space of a multipartite system. The expressions for these projectors are tensor product polynomials. This structure is convenient for efficient computation of quantum correlations in multipartite systems with a large number of constituents.


2019 ◽  
Vol 33 (22) ◽  
pp. 1950254 ◽  
Author(s):  
M. Mansour ◽  
M. Daoud

We derive the entangled thermal mixed states by using the formalism of phase states for a finite-dimensional algebra of a multi-qubit system in contact with an independent thermal environment of absolute temperature [Formula: see text]. Thermal entangled states describing the multi-qubit system in equilibrium with the thermal bath are a special kind of mixed states that exhibit genuine multipartite correlation. We define the unitary phase operators for a multipartite system of non-interacting qubits. Entangled density matrices are derived for qubits interacting via an Hermitian Hamiltonian of Heisenberg type [Formula: see text]. By assuming that the noisy interaction of the entangled qubit ensemble with the bath is governed by a local Hamiltonian [Formula: see text], we show that the entangled phase states can be decohered. When the multi-qubits entangled system reaches the equilibrium with the thermal bath, the decohered mixed states are identified with entangled thermal states. The thermal mixed states for bipartite and multipartite systems are explicitly expressed and their bipartite entanglement properties are investigated.


2019 ◽  
Vol 34 (19) ◽  
pp. 1950151 ◽  
Author(s):  
Mostafa Mansour ◽  
Mohammed Daoud

This paper concerns the construction of k-uniform maximally mixed multipartite states by using the formalism of phase states for finite dimensional systems (qudits). The k-uniform states are a special kind of entangled (n)-qudits states, such that after tracing out arbitrary (n[Formula: see text]k) subsystems, the remaining (k) subsystems are maximally mixed. We recall some basic elements about unitary phase operators of a multi-qudit system and we give the corresponding separable density matrices. Evolved density matrices arise when qudits of the multipartite system are allowed to interact via an Hamiltonian of Heisenberg type. The expressions of maximally mixed states are explicitly derived from multipartite evolved phase states and their properties are discussed.


2019 ◽  
Vol 99 (3) ◽  
Author(s):  
Lin Chen ◽  
Delin Chu ◽  
Lilong Qian ◽  
Yi Shen

2019 ◽  
Vol 68 (23) ◽  
pp. 230301
Author(s):  
Feng Liu ◽  
Dong-Mei Gao ◽  
Xiao-Qiu Cai

Sign in / Sign up

Export Citation Format

Share Document