scholarly journals Rayleigh-Type Waves in a Rotating Fiber-Reinforced Half Space under the Action of Magnetic Field, Gravity and Surface Stress

2021 ◽  
pp. 1-7
Author(s):  
Narottam Maity ◽  
◽  
S P Barik Barik ◽  
P K Chaudhuri ◽  
◽  
...  

The aim of the present article is to analyze the propagation of Rayleigh waves in a rotating fiber-reinforced electrically conducting elastic solid medium under the influence of surface stress, magnetic field and gravity. The magnetic field is applied in such a direction that the problem can be considered as a two dimensional one. The wave velocity equation for Rayleigh waves has been obtained. In the absence of gravity field, surface stress, rotation and fiberreinforcement, the frequency equation is in complete agreement with the corresponding classical results. The effects on various subjects of interest are discussed and shown graphically. Comparisons are made with the corresponding results in absence of surface stress

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Baljeet Singh ◽  
Ritu Sindhu ◽  
Jagdish Singh

A problem on Rayleigh wave in a rotating half-space of an orthotropic micropolar material is considered. The governing equations are solved for surface wave solutions in the half space of the material. These solutions satisfy the boundary conditions at free surface of the half-space to obtain the frequency equation of the Rayleigh wave. For numerical purpose, the frequency equation is approximated. The nondimensional speed of Rayleigh wave is computed and shown graphically versus nondimensional frequency and rotation-frequency ratio for both orthotropic micropolar elastic and isotropic micropolar elastic cases. The numerical results show the effects of rotation, orthotropy, and nondimensional frequency on the nondimensional speed of the Rayleigh wave.


2020 ◽  
Vol 26 (21-22) ◽  
pp. 2070-2080 ◽  
Author(s):  
Mohan D Sharma

Propagation of harmonic plane waves is considered in an orthotropic elastic medium in the presence of initial stress and gravity. Roots of a quadratic equation define the propagation of one quasi-longitudinal wave and one quasi-transverse wave in a symmetry plane in this medium. These two waves are coupled in the identical phase to define the propagation of Rayleigh waves at the boundary of the medium. Two conditions at the stress-free boundary translate into a complex frequency equation, which explains the dispersive behavior of this Rayleigh wave. For the presence of radical terms, this complex equation is rationalized into a real algebraic equation. Only one root of this algebraic equation satisfies the mother frequency equation and hence represents the propagation of dispersive Rayleigh waves at the boundary of the orthotropic solid. The influence of initial stress and gravity on velocity and polarization of Rayleigh waves is observed through a numerical example.


1958 ◽  
Vol 6 ◽  
pp. 446-447
Author(s):  
Willard H. Bennett

A tube has been developed in which the shapes of streams of charged particles moving in the earth's magnetic field can be produced accurately to scale. The tube has been named the Störmertron in honor of Carl Störmer who calculated many such orbits. New developments which have made this tube possible include a method for coating the inside of large glass tubes with a transparent electrically conducting film, and an electron gun producing gas-focused streams in less than ½ micron of mercury vapor, a nearly vapor-free grease joint, and a nearly vapor-free carbon black. The magnetic dipole field of the earth is simulated with an Alnico magnet capped with properly shaped soft iron caps. The stream is deflected using two pairs of yoke coils near the gun.


1966 ◽  
Vol 62 (3) ◽  
pp. 541-545 ◽  
Author(s):  
C. M. Purushothama

AbstractIt has been shown that uncoupled surface waves of SH type can be propagated without any dispersion in an electrically conducting semi-infinite elastic medium provided a uniform magnetic field acts non-aligned to the direction of wave propagation. In general, the velocity of propagation will be slightly greater than that of plane shear waves in the medium.


2012 ◽  
Vol 2012 ◽  
pp. 1-26 ◽  
Author(s):  
Mohamed Abd El-Aziz ◽  
Tamer Nabil

The effect of thermal radiation on steady hydromagnetic heat transfer by mixed convection flow of a viscous incompressible and electrically conducting fluid past an exponentially stretching continuous sheet is examined. Wall temperature and stretching velocity are assumed to vary according to specific exponential forms. An external strong uniform magnetic field is applied perpendicular to the sheet and the Hall effect is taken into consideration. The resulting governing equations are transformed into a system of nonlinear ordinary differential equations using appropriate transformations and then solved analytically by the homotopy analysis method (HAM). The solution is found to be dependent on six governing parameters including the magnetic field parameterM, Hall parameterm, the buoyancy parameterξ, the radiation parameterR, the parameter of temperature distributiona, and Prandtl number Pr. A systematic study is carried out to illustrate the effects of these major parameters on the velocity and temperature distributions in the boundary layer, the skin-friction coefficients, and the local Nusselt number.


1967 ◽  
Vol 1 (1) ◽  
pp. 37-54 ◽  
Author(s):  
M. D. Cowley

Ionizing shocks for plane flows with the magnetic field lying in the flow plane are considered. The gas is assumed to be electrically conducting downstream, but non-conducting upstream. Shocks whose downstream state has a normal velocity component less than the slow magneto-acoustic-wave speed and whose upstream state is supersonic are found to be non-evolutionary in the face of plane magneto-acoustic disturbances, unless the upstream electric field in a frame of reference where the gas is at rest is arbitrary. Velocity conditions are also determined for shock stability with the electric field not arbitrary.Shock structures are found for the case of large ohmic diffusion, the initial temperature rise and ionization of the gas being caused by a thin transition having the properties of an ordinary gasdynamic shock. For the case where shocks are evolutionary when the upstream electric field is arbitrary, the shock structure requirements only restrict the electric field by limiting the range of possible values. When shocks are evolutionary with the electric field not arbitrary, they can only have a structure for a particular value of the electric field. Limits to the current carried by ionizing shocks and the effects of precursor ionization are discussed qualitatively.


1962 ◽  
Vol 13 (1) ◽  
pp. 21-32 ◽  
Author(s):  
W. F. Hughes ◽  
R. A. Elco

The motion of an electrically conducting, incompressible, viscous fluid in the presence of a magnetic field is analyzed for flow between two parallel disks, one of which rotates at a constant angular velocity. The specific application to liquid metal lubrication in thrust bearings is considered. The two field configurations discussed are: an axial magnetic field with a radial current and a radial magnetic field with an axial current. It is shown that the load capacity of the bearing is dependent on the MHD interactions in the fluid and that the frictional torque on the rotor can be made zero for both field configurations by supplying electrical energy through the electrodes to the fluid.


Sign in / Sign up

Export Citation Format

Share Document