scholarly journals The Drosophila melanogaster Neprilysin Nepl15 is involved in lipid and carbohydrate storage

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Surya Banerjee ◽  
Christine Woods ◽  
Micheal Burnett ◽  
Scarlet J. Park ◽  
William W. Ja ◽  
...  

AbstractThe prototypical M13 peptidase, human Neprilysin, functions as a transmembrane “ectoenzyme” that cleaves neuropeptides that regulate e.g. glucose metabolism, and has been linked to type 2 diabetes. The M13 family has undergone a remarkable, and conserved, expansion in the Drosophila genus. Here, we describe the function of Drosophila melanogaster Neprilysin-like 15 (Nepl15). Nepl15 is likely to be a secreted protein, rather than a transmembrane protein. Nepl15 has changes in critical catalytic residues that are conserved across the Drosophila genus and likely renders the Nepl15 protein catalytically inactive. Nevertheless, a knockout of the Nepl15 gene reveals a reduction in triglyceride and glycogen storage, with the effects likely occurring during the larval feeding period. Conversely, flies overexpressing Nepl15 store more triglycerides and glycogen. Protein modeling suggests that Nepl15 is able to bind and sequester peptide targets of catalytically active Drosophila M13 family members, peptides that are conserved in humans and Drosophila, potentially providing a novel mechanism for regulating the activity of neuropeptides in the context of lipid and carbohydrate homeostasis.




2011 ◽  
Vol 435 (3) ◽  
pp. 771-781 ◽  
Author(s):  
Tatu J. K. Haataja ◽  
M. Kristian Koski ◽  
J. Kalervo Hiltunen ◽  
Tuomo Glumoff

All of the peroxisomal β-oxidation pathways characterized thus far house at least one MFE (multifunctional enzyme) catalysing two out of four reactions of the spiral. MFE type 2 proteins from various species display great variation in domain composition and predicted substrate preference. The gene CG3415 encodes for Drosophila melanogaster MFE-2 (DmMFE-2), complements the Saccharomyces cerevisiae MFE-2 deletion strain, and the recombinant protein displays both MFE-2 enzymatic activities in vitro. The resolved crystal structure is the first one for a full-length MFE-2 revealing the assembly of domains, and the data can also be transferred to structure–function studies for other MFE-2 proteins. The structure explains the necessity of dimerization. The lack of substrate channelling is proposed based on both the structural features, as well as by the fact that hydration and dehydrogenation activities of MFE-2, if produced as separate enzymes, are equally efficient in catalysis as the full-length MFE-2.



2005 ◽  
Vol 215 (2) ◽  
pp. 90-96 ◽  
Author(s):  
Yuki Hirota ◽  
Kazunobu Sawamoto ◽  
Kuniaki Takahashi ◽  
Ryu Ueda ◽  
Hideyuki Okano


2021 ◽  
Vol 12 ◽  
Author(s):  
Hua Guan ◽  
Jin Zhang ◽  
Jing Luan ◽  
Hao Xu ◽  
Zhenghao Huang ◽  
...  

Abnormal gene expression and secreted protein levels are accompanied by extensive pathological changes. Secreted frizzled related protein (SFRP) family members are antagonistic inhibitors of the Wnt signaling pathway, and they were recently found to be involved in the pathogenesis of a variety of metabolic diseases, which has led to extensive interest in SFRPs. Previous reports highlighted the importance of SFRPs in lipid metabolism, obesity, type 2 diabetes mellitus and cardiovascular diseases. In this review, we provide a detailed introduction of SFRPs, including their structural characteristics, receptors, inhibitors, signaling pathways and metabolic disease impacts. In addition to summarizing the pathologies and potential molecular mechanisms associated with SFRPs, this review further suggests the potential future use of SFRPs as disease biomarkers therapeutic targets.



2020 ◽  
Vol 57 (11) ◽  
pp. 1383-1393
Author(s):  
Qingqing Zhao ◽  
Jinxin Zhou ◽  
Yu Pan ◽  
Huijun Ju ◽  
Liying Zhu ◽  
...  

Abstract Aims Steroid diabetes mellitus (SDM) is a metabolic syndrome caused by an increase in glucocorticoids, and its pathogenesis is unclear. 18F-FDG PET/CT can reflect the glucose metabolism of tissues and organs under living conditions. Here, PET/CT imaging of SDM and type 2 diabetes mellitus (T2DM) rats was used to visualize changes in glucose metabolism in the main glucose metabolizing organs and investigate the pathogenesis of SDM. Methods SDM and T2DM rat models were established. During this time, PET/CT imaging was used to measure the %ID/g value of skeletal muscle and liver to evaluate glucose uptake. The pancreatic, skeletal muscle and liver were analyzed by immunohistochemistry. Results SDM rats showed increased fasting blood glucose and insulin levels, hyperplasia of islet α and β cells, increased FDG uptake in skeletal muscle accompanied by an up-regulation of PI3Kp85α, IRS-1, and GLUT4, no significant changes in liver uptake, and that glycogen storage in the liver and skeletal muscle increased. T2DM rats showed atrophy of pancreatic islet β cells and decreased insulin levels, significantly reduced FDG uptake and glycogen storage in skeletal muscle and liver. Conclusions The pathogenesis of SDM is different from that of T2DM. The increased glucose metabolism of skeletal muscle may be related to the increased compensatory secretion of insulin. Glucocorticoids promote the proliferation of islet α cells and cause an increase in gluconeogenesis in the liver, which may cause increased blood glucose.



Author(s):  
Viktor Dombrádi ◽  
Peter Friedrich ◽  
Georg Bot


1964 ◽  
Vol 42 (3) ◽  
pp. 455-462 ◽  
Author(s):  
S. C. Jay

When larvae of the three castes of honey bees are starved under natural or laboratory conditions, some produce dwarf adults. To test the effects of larval starvation on subsequent development, larvae of various weights were removed from their food and put into gelatin capsules; (a) success in completing prepupal and pupal ecdyses, (b) weight after the pupal ecdysis, (c) time for development, and (d) type of adult reared were recorded. The longer the larval feeding period for the three castes, the more successful were tie ecdyses. Developmental failure was high if worker, drone, and queen larvae were removed from their food when they were 60–65%, 85%, and 60–65% of the weights of control larvae respectively. The developmental times of workers or drones did not vary significantly with the various larval weights but those of larvae from queen cells increased with decrease in larval weight. The various-sized adult drones reared did not appear to differ in gross external appearance but the smaller workers had proportionately longer wings than the larger ones. Adults reared from the smallest larvae from queen cells resembled workers (or intercastes) whereas those from the largest larvae resembled queens.



Sign in / Sign up

Export Citation Format

Share Document