stationary operation
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 1)

Author(s):  
Yu. A. Buryan ◽  
◽  
D. V. Sitnikov ◽  
M. V. Silkov ◽  
A. A. Buryan ◽  
...  

В работе рассмотрен активный динамический гаситель колебаний с компенсацией виброактивных сил с управлением по реакции основания для увеличения эффективной виброизоляции при нестационарных режимах работы поршневой машины. В качестве пассивной системы виброизоляции предложена и рассмотрена пневмоопора с дополнительным объёмом, соединённая дросселем. В стационарном зарезонансном режиме пневмоопора позволяет уменьшить собственную частоту подвески и улучшить виброизоляцию. Основное внимание в работе уделено оценке эффективности применения активного гасителя колебаний при нестационарном режиме работы поршневой машины. Составлена математическая модель исследуемой системы и путём численного решения дифференциальных уравнений получены значения усилий на основание с использованием активного динамического гасителя колебаний. Показано на примере, что в режиме «включение - остановки» поршневой машины применение активного динамического гасителя колебаний обеспечивает высокую эффективность виброизоляции в окрестности резонансных частот.


2020 ◽  
Vol 97 ◽  
pp. 76-85 ◽  
Author(s):  
J.A. Cariño ◽  
M. Delgado-Prieto ◽  
D. Zurita ◽  
A. Picot ◽  
J.A. Ortega ◽  
...  

Author(s):  
V. A. Kudinov ◽  
E. V. Kotova ◽  
O. Yu. Kurganova ◽  
V. K. Tkachev

The results of experimental and theoretical studies of the temperature state of the high- pressure cylinder (HPC) of the T-100-130 steam turbine for one of the start modes are presented. Taking into account the dependence of the coefficient of linear expansion on the temperature, the elongations of the individual sections of the casing under different temperatures and its total elongation after the turbine operation starts to correspond to the stationary operation mode have been found. The studies have shown that in the process of actuation the turbine there is a significant difference in temperature along the length of the HPC casing. In this case, the most intense heating occurs in the area from the second to the sixth section. The greatest temperature difference was observed in stationary operation at maximum temperature in the fifth section. Using the orthogonal method of L. V. Kantorovich, an approximate analytical solution of the thermal conductivity problem for a two-layer wall (turbine casing – thermal insulation) under inhomogeneous boundary conditions of the third kind is obtained. With the use of experimental data on the temperature state of the outer surface of the casing of the HPC by solving the inverse problem of thermal conductivity, the average heat transfer coefficients for the actuation period characterizing the intensity of heat transfer from steam to the casing have been found. On the basis of experimental data on the temperature change of any of the controlled parameters of the turbine over time, a theoretical method for predicting its change in a certain time range from the time of the its last measurement has been developed. The use of this method to predict the change in the temperature difference between the top and bottom of the HPC casing during the actuation showed that for a period of time equal to 3–5 minutes the forecast is fulfilled with high reliability.


2019 ◽  
Vol 24 ◽  
pp. 483-494
Author(s):  
Francesco Castellani ◽  
Davide Astolfi ◽  
Francesco Natili ◽  
Nicola Senin ◽  
Luca Landi

Laser Physics ◽  
2018 ◽  
Vol 28 (6) ◽  
pp. 065103 ◽  
Author(s):  
H E Ibarra Villalón ◽  
O Pottiez ◽  
Y E Bracamontes Rodriguez ◽  
J P Lauterio-Cruz ◽  
A Gomez Vieyra

Author(s):  
A K Nikolaev ◽  
G H Samigullin ◽  
L G Samigullina ◽  
V G Fetisov

Author(s):  
Mitchell Cobb ◽  
Nihar Deodhar ◽  
Christopher Vermillion

This paper presents the experimental validation and dynamic similarity analysis for a lab-scale version of an airborne wind energy (AWE) system executing closed-loop motion control. Execution of crosswind flight patterns, achieved in this work through the asymmetric motion of three tethers, enables dramatic increases in energy generation compared with stationary operation. Achievement of crosswind flight in the lab-scale experimental framework described herein allows for rapid, inexpensive, and dynamically scalable characterization of new control algorithms without recourse to expensive full-scale prototyping. We first present the experimental setup, then derive dynamic scaling relationships necessary for the lab-scale behavior to match the full-scale behavior. We then validate dynamic equivalence of crosswind flight over a range of different scale models of the Altaeros Buoyant airborne turbine (BAT). This work is the first example of successful lab-scale control and measurement of crosswind motion for an AWE system across a range of flow speeds and system scales. The results demonstrate that crosswind flight can achieve significantly more power production than stationary operation, while also validating dynamic scaling laws under closed-loop control.


Author(s):  
Mitchell Cobb ◽  
Christopher Vermillion ◽  
Hosam Fathy

This paper presents an original experimental setup for controlling and measuring the crosswind flight of airborne wind energy systems in a laboratory environment. Execution of cross-wind flight patterns, which is achieved in this work through the asymmetric motion of three tethers, enables dramatic increases in energy generation compared with stationary operation. Achievement of crosswind flight in the 1:100-scale experimental framework described herein allows for rapid, inexpensive, and dynamically scalable characterization of new control algorithms without recourse to expensive full-scale prototyping. This work is the first example of successful lab-scale control and measurement of crosswind motion for an airborne wind energy system. Specifically, this paper presents the experimental setup, crosswind flight control strategy, and experimental results for a model of the Altaeros Buoyant Airborne Turbine (BAT). The results demonstrate that crosswind flight control can achieve nearly 50 percent more power production then stationary operation, while also demonstrating the potential of the experimental framework for further algorithm development.


Sign in / Sign up

Export Citation Format

Share Document