scholarly journals Experimental and Theoretical Research of a Hot Condition of High Pressure Cylinder of the T-100-130 Steam Turbine

Author(s):  
V. A. Kudinov ◽  
E. V. Kotova ◽  
O. Yu. Kurganova ◽  
V. K. Tkachev

The results of experimental and theoretical studies of the temperature state of the high- pressure cylinder (HPC) of the T-100-130 steam turbine for one of the start modes are presented. Taking into account the dependence of the coefficient of linear expansion on the temperature, the elongations of the individual sections of the casing under different temperatures and its total elongation after the turbine operation starts to correspond to the stationary operation mode have been found. The studies have shown that in the process of actuation the turbine there is a significant difference in temperature along the length of the HPC casing. In this case, the most intense heating occurs in the area from the second to the sixth section. The greatest temperature difference was observed in stationary operation at maximum temperature in the fifth section. Using the orthogonal method of L. V. Kantorovich, an approximate analytical solution of the thermal conductivity problem for a two-layer wall (turbine casing – thermal insulation) under inhomogeneous boundary conditions of the third kind is obtained. With the use of experimental data on the temperature state of the outer surface of the casing of the HPC by solving the inverse problem of thermal conductivity, the average heat transfer coefficients for the actuation period characterizing the intensity of heat transfer from steam to the casing have been found. On the basis of experimental data on the temperature change of any of the controlled parameters of the turbine over time, a theoretical method for predicting its change in a certain time range from the time of the its last measurement has been developed. The use of this method to predict the change in the temperature difference between the top and bottom of the HPC casing during the actuation showed that for a period of time equal to 3–5 minutes the forecast is fulfilled with high reliability.

2007 ◽  
Vol 54 (4) ◽  
pp. 272-275 ◽  
Author(s):  
N. N. Gudkov ◽  
A. N. Babiev ◽  
V. I. Kirillov ◽  
S. A. Koshelev ◽  
O. N. Petrova ◽  
...  

2018 ◽  
Vol 38 ◽  
pp. 04015
Author(s):  
Tao Yan ◽  
Wen Cai ◽  
Wen Chen ◽  
Jin Lu ◽  
Yang Hong-yan

In concern of the velocity distribution of the exhaust passage of 330MW turbine is not uniform, which results in higher the upper temperature difference of the condenser and higher exhaust pressure. It is introduced in this article that based on mathematical simulation, steam-equalizing equipment is augmented at the exhaust area of the condenser which makes the decrease in the steam resistance, much more uniform velocity distribution, and the increase of the heat transfer coefficient. By comparison of the condenser performance test before the amending and after, the result shows that after the amending, the upper temperature difference of the condenser and the exhaust pressure decreases dramatically.


2021 ◽  
Vol 24 (2) ◽  
pp. 37-49
Author(s):  
Borys P. Zaitsev ◽  
Viktor L. Shvetsov ◽  
Oleksandr M. Hubskyi ◽  
Serhii A. Palkov ◽  
Tetiana V. Protasova

The problem of reducing the axial dimensions of steam turbine diaphragms is associated with the problem of steam turbine modernization performed by increasing the number of reactive blading stages and using existing foundations. Evaluation of the suitability of diaphragm design versions with established steam flow characteristics was carried out with constraints on short- and long-term strength conditions, as well as the accumulation of axial deflections due to creep. For computational research, there was introduced a methodology using the finite element method and Yu. M. Rabotnov’s theory of strain aging. The calculation of creep was reduced to solving an elastic-plastic problem with a deformation curve, which was represented by an isochronous creep curve for the time chosen. A software was used providing for the automated construction of the original computer diaphragm model with the help of guide-vane profile drawings and axial cross-sections of the diaphragm rim and body, as well as several geometric parameters. The calculated model of a welded diaphragm reproduces the main essential features of the structure, the material properties of its elements, as well as steam load. The exploratory studies of diaphragms with reduced axial dimensions were performed on the example of the second- and third-stage diaphragms of the high-pressure cylinder of the K-325-23.5 steam turbine. The original second- and third-stage diaphragm designs were considered to be basic, in relation to which, according to strength and rigidity parameters, the alternative ones were compared. Calculated data for the basic diaphragm design versions for 100 thousand operating hours were obtained. According to the calculations, maximum deflections are achieved at diaphragm edges, and the stresses, that are maximum at the points where the guide vanes are attached to the diaphragm rim and body, undergo a significant redistribution due to creep. Two approaches to the reduction of the axial dimensions of the second-stage diaphragm design of the steam turbine high pressure cylinder were involved. In the first approach, the reduction of the dimensions was achieved by proportionally reducing the guide-vane profile with a corresponding increase in the number of the guide vanes. In the second approach, the profile remained unchanged, but the axial dimensions of the diaphragm rim and body were reduced. The parameters of strength both in the elastic state at the beginning of operation and in the conditions of creep, as well as the accumulation of axial deflections were investigated. Based on the comparisons with the basic design, it was established that the second approach is more effective. Additional recommendations for the use of more heat-resistant steels for outlet guide vanes and the conditions of diaphragm attachment in the turbine casing are given.


Author(s):  
Pavel Petrovich Gontarovskiy ◽  
Nikolay Grigor'evich Shulzhenko ◽  
Nataliya Grigor'evna Garmash ◽  
Alla Aleksandrovna Glyadya

Author(s):  
Wenhao Huo ◽  
Jun Li ◽  
Jiandao Yang ◽  
Liqun Shi ◽  
Zhenping Feng

The cooling effect of the internal bypass cooling system in high pressure cylinder of an ultra-supercritical steam turbine using the conjugation of the flow calculation and heat transfer method was numerically studied in this paper. Three-dimensional Reynolds-Averaged Navier-Stokes (RANS) solutions and k–ε turbulent model with scalable wall function were used to analyze the cooling performance based on the CFD software ANSYS-CFX. The details of the flow pattern of the fluid domains and temperature distributions of the solid domains in the system were illustrated. The temperature field of the high pressure cylinder was compared between the steam cooling case and the non-cooling case without consideration of the steam cooling of the internal bypass cooling system. The main conclusion that can be drawn out of this research work is that the high pressure inner casing and the large part of axial thrust balance piston can be effectively cooled by the internal bypass cooling system. In addition, the resulting temperature distributions of the inner casing are uniformed compared to the non-cooling case. The temperature of the outer casing of the high pressure cylinder increases a little compared to the non-cooling case.


2019 ◽  
Vol 12 (01) ◽  
pp. 1850105 ◽  
Author(s):  
Hairui Sun ◽  
Pin Lv ◽  
Chao Wang ◽  
Yunxian Liu ◽  
Xiaopeng Jia ◽  
...  

A series of binary-doped CoSb3 with Te and Se/Sn bulk compounds Co4Sb[Formula: see text]TexSny/Sey ([Formula: see text] and 0.6, [Formula: see text] and 0.3), have been successfully prepared via a simple high pressure and high-temperature (HPHT) method. And, the influence of the doping elements on the microstructure of the samples synthesized under diverse pressures and the corresponding TE performance were studied in detail. Comparing with other preparation methods, the synthesis time of HPHT was acutely shortened. The obtained samples contain more grain boundaries, lattice disorder, dislocations and the possible “nanodot”, which have positive effect on reducing thermal conductivity. The experimental data indicate that the absolute values of Seebeck coefficient increases with pressure. What’s more, the thermal conductivities show a monotone decreasing trend as the synthesis pressure rises. The minimum value obtained is 1.93[Formula: see text]Wm[Formula: see text]K[Formula: see text] at normal temperature for Co4Sb[Formula: see text]Te[Formula: see text]Se[Formula: see text] prepared under 3[Formula: see text]GPa.


Author(s):  
Jong-Shang Liu ◽  
Mark C. Morris ◽  
Malak F. Malak ◽  
Randall M. Mathison ◽  
Michael G. Dunn

In order to have higher power to weight ratio and higher efficiency gas turbine engines, turbine inlet temperatures continue to rise. State-of-the-art turbine inlet temperatures now exceed the turbine rotor material capability. Accordingly, one of the best methods to protect turbine airfoil surfaces is to use film cooling on the airfoil external surfaces. In general, sizable amounts of expensive cooling flow delivered from the core compressor are used to cool the high temperature surfaces. That sizable cooling flow, on the order of 20% of the compressor core flow, adversely impacts the overall engine performance and hence the engine power density. With better understanding of the cooling flow and accurate prediction of the heat transfer distribution on airfoil surfaces, heat transfer designers can have a more efficient design to reduce the cooling flow needed for high temperature components and improve turbine efficiency. This in turn lowers the overall specific fuel consumption (SFC) for the engine. Accurate prediction of rotor metal temperature is also critical for calculations of cyclic thermal stress, oxidation, and component life. The utilization of three-dimensional computational fluid dynamics (3D CFD) codes for turbomachinery aerodynamic design and analysis is now a routine practice in the gas turbine industry. The accurate heat-transfer and metal-temperature prediction capability of any CFD code, however, remains challenging. This difficulty is primarily due to the complex flow environment of the high-pressure turbine, which features high speed rotating flow, coupling of internal and external unsteady flows, and film-cooled, heat transfer enhancement schemes. In this study, conjugate heat transfer (CHT) simulations are performed on a high-pressure cooled turbine stage, and the heat flux results at mid span are compared to experimental data obtained at The Ohio State University Gas Turbine Laboratory (OSUGTL). Due to the large difference in time scales between fluid and solid, the fluid domain is simulated as steady state while the solid domain is simulated as transient in CHT simulation. This paper compares the unsteady and transient results of the heat flux on a high-pressure cooled turbine rotor with measurements obtained at OSUGTL.


Sign in / Sign up

Export Citation Format

Share Document