growth disruption
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 79 (3) ◽  
pp. 272-284
Author(s):  
Ripi Singh ◽  
Marybeth Miceli

This paper is intended to highlight roles that women can and likely will play in shaping the future of NDE 4.0, from execution to leadership levels as well as from development to transformation activities. As we build momentum toward adopting Industry 4.0 into the nondestructive evaluation (NDE) domain, we face multiple challenges such as technology standardization, talent and skills shortfall, massive transformation, and regulatory and certification standards (Singh 2019, 2020a). Many of these challenges are better addressed with a proper mix of gender in responsible teams. Women in STEM (science, technology, engineering, and mathematics) fields are a source of talent that can be harnessed as digitalization becomes a major part of the NDE sector. According to a recent Forbes article, traits like listening and empathy serve women well in “change leadership,” which is the ability to influence and inspire action in others and respond with vision and agility during periods of growth, disruption, or uncertainty to bring about the needed change (Lipkin 2019). While working the innovation value chain, emotional intelligence makes women better suited to capturing marketplace insight and easing friction in technology adoption, and a balance of gender in a team makes for more productive ideation sessions for effective problem-solving and objective execution. This paper presents literature research triggered by personal experience and substantiated by recent candid conversations with women leaders in NDE, to highlight the importance of a blended and balanced gender mix required for NDE 4.0.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chiharu Akimoto-Tomiyama

AbstractBurkholderia glumae is a causal agent of bacterial grain and seedling rot in rice, and is a threat to stable global food supply. The virulence of B. glumae was suppressed when it was inoculated on budding seed rather than on non-budding seed. To clarify the phenomena, pathogen titer inside the rice plant was measured by serial dilution plating of lysates from budding rice seedlings. Surprisingly, morphologically different types of colonies were observed on the plates. These ‘contaminated’ rice seed-born bacteria (RSB) were identified by sequencing 16S rRNA genes as three strains of Pseudomonas putida (RSB1, RSB10, RSB15) and Stenotrophomonas maltophilia (RSB2). All bacteria and B. glumae were simultaneously inoculated onto rice seeds, and all three P. putida RSBs suppressed the growth disruption caused by B. glumae, whereas RSB2 had no effect. Thus, the virulence was synergistically suppressed when co-treated with RSBs. The effect could be dependent on the high biofilm formation ability of RSB2. By comprehensive microbiota analysis, endogenous rice flora were changed by RSBs treatment. These results suggest the possibility of novel pathogen control through pre-treatment with endogenous beneficial microorganisms. The method would contribute substantially to the implementation of sustainable agriculture stated in Sustainable Development Goals of United Nations.


mSphere ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. e01132-20
Author(s):  
Clément Patacq ◽  
Nicolas Chaudet ◽  
Fabien Létisse

ABSTRACTBacteria grow in constantly changing environments that can suddenly become completely depleted of essential nutrients. The stringent response, a rewiring of the cellular metabolism mediated by the alarmone (p)ppGpp, plays a crucial role in adjusting bacterial growth to the severity of the nutritional stress. The ability of (p)ppGpp to trigger a slowdown of cell growth or induce bacterial dormancy has been widely investigated. However, little is known about the role of (p)ppGpp in promoting growth recovery after severe growth inhibition. In this study, we performed a time-resolved analysis of (p)ppGpp metabolism in Escherichia coli as it recovered from a sudden slowdown in growth. The results show that E. coli recovers by itself from the growth disruption provoked by the addition of serine hydroxamate, the serine analogue that we used to induce the stringent response. Growth inhibition was accompanied by a severe disturbance of metabolic activity and, more surprisingly, a transient overflow of valine and alanine. Our data also show that ppGpp is crucial for growth recovery since in the absence of ppGpp, E. coli’s growth recovery was slower. In contrast, an increased concentration of pppGpp was found to have no significant effect on growth recovery. Interestingly, the observed decrease in intracellular ppGpp levels in the recovery phase correlated with bacterial growth, and the main effect involved in the return to the basal level was identified by flux calculation as growth dilution. This report thus significantly expands our knowledge of (p)ppGpp metabolism in E. coli physiology.IMPORTANCE The capacity of microbes to resist and overcome environmental insults, known as resilience, allows them to survive in changing environments but also to resist antibiotic and biocide treatments and immune system responses. Although the role of the stringent response in bacterial resilience to nutritional stresses has been well studied, little is known about its importance in the ability of the bacteria to not just resist but also recover from these disturbances. To address this important question, we investigated growth disruption resilience in the model bacterium Escherichia coli and its dependence on the stringent response alarmone (p)ppGpp by quantifying ppGpp and pppGpp levels as growth was disrupted and then recovered. Our findings may thus contribute to understanding how ppGpp improves E. coli’s resilience to nutritional stress and other environmental insults.


2020 ◽  
Author(s):  
Clément Patacq ◽  
Nicolas Chaudet ◽  
Fabien Letisse

ABSTRACTBacteria grow in constantly changing environments that can suddenly become completely deleted in essential nutrients. The stringent response, a rewiring of the cellular metabolism mediated by the alarmone (p)ppGpp, plays a crucial role in adjusting bacterial growth to the severity of the nutritional insult. The ability of (p)ppGpp to trigger a slowdown of cell growth or induce bacterial dormancy has been widely investigated. However, little is known about the role of (p)ppGpp in promoting growth recovery after severe growth inhibition. In this study, we performed a time-resolved analysis of (p)ppGpp metabolism in Escherichia coli as it recovered from a sudden slowdown in growth. Results show that E. coli recovers by itself from the growth disruption provoked by the addition of serine hydroxamate, the serine analogue that we used to induce the stringent response. Growth inhibition was accompanied by a severe disturbance of metabolic activity and more surprisingly, by a transient overflow of valine and alanine. Our data also show that ppGpp is crucial for growth recovery since in the absence of ppGpp, E. coli’s growth recovery was slower. In contrast, an increased concentration of pppGpp was found to have no significant effect on growth recovery. Interestingly, the observed decrease in intracellular ppGpp levels in the recovery phase correlated with bacterial growth and the main effect involved was identified as growth dilution rather than active degradative process. This report thus significantly expands our knowledge of (p)ppGpp metabolism in E. coli physiology.IMPORTANCEThe capacity of microbes to resist and overcome environmental insults, know as resilience, allows them to survive in changing environments but also to resist antibiotic and biocide treatments, immune system responses. Although the role of the stringent response in bacterial resilience to nutritional insults has been well studied, little is known about its importance in the ability of the bacteria to not just resist but also recover from these disturbances. To address this important question, we investigated growth disruption resilience in the model bacterium Escherichia coli and its dependency on the stringent response alarmone (p)ppGpp by quantifying ppGpp and pppGpp levels as growth was disrupted and then recovered. Our findings may thus contribute to understanding how ppGpp improves E. coli’s resilience to nutritional stress and other environmental insults.


Forests ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 798
Author(s):  
Shanon Hankin ◽  
Gary Watson

For urban trees with strong taproots, a shift in root growth towards increased lateral root development could improve tree performance in compacted, poorly drained urban soils. In effort to achieve this desired shift, various propagation and production practices exist within the nursery industry. However, the effectiveness of practices used to disrupt taproot development, as well as their impact on root architecture, has been largely undocumented. To determine how seedling root systems respond to taproot growth disruption, we pruned oak seedling taproots either mechanically at 5 and/or 15 cm, or via air pruning at 15 cm. Taproot regeneration and lateral root development were evaluated after two years. Taproot pruning resulted in multiple regenerated taproots. The location and number of times the taproot(s) was pruned did not appear to alter the ultimate number. Mechanical taproot pruning did not affect lateral root development above the first pruning cut location at 5 or 15 cm, but generally increased the density of lateral roots below the pruning cut, likely due to the multiple taproots present. Most lateral roots were fine roots less than 1 mm in diameter (fine roots), being unlikely to become long-lived components of the root system architecture. The average number of lateral roots on air pruned (AP) seedlings was generally greater than on the same taproot segment of control (C) seedlings. To determine how these seedling changes impact the root regeneration of liner stock, we planted both taproot pruned and taproot air pruned seedlings in in-ground fabric bags filled with field soil (B) or directly into the field without bags (F). Root regeneration potential (RRP) at the bottom and lateral surfaces of the root ball were evaluated. There was less RRP on the lateral surface of the root ball in taproot air pruned, container-grown (CG) compared to taproot pruned, bare root (BR) bur oak liners, and there was no difference in red oak liners. The multiple taproots of mechanically pruned BR seedlings did not result in excessive taproot development as liners. In contrast, CG seedling taproots restricted by air pruning produced more regenerated taproots after transplanting. While seedling taproot growth disruption does disrupt the growth of a dominant single taproot and alters the architecture toward increasing the number of lateral roots, these practices do not result in laterally dominated root architecture at the liner stage of nursery production. Future research should determine how these production methods effect lateral root growth after a tree is established in the landscape and determine appropriate combinations of production methods for different species.


Significance Almost a month of protests against a range of perceived government failings is putting pressure on President Ivan Duque, already weakened by plunging approval ratings and his party’s loss of its legislative majority in October’s elections. His efforts to allay tensions have yet to bear fruit and fall far short of a list of 13 demands tabled by the National Strike Committee. Impacts Weaker exports will lead to an increase in the current account deficit. No changes to the policy rate are expected in the short term unless the economic growth disruption from social unrest worsens. Given the multitude of stakeholders and issues in dispute, protests will probably linger for the rest of Duque’s term.


SOEPRA ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Ni Luh Gede Wira Yanti ◽  
Endang Widyorini ◽  
Bernadeta Resti Nurhayati

Every child had the rights to survive, grow, and well develop to perfect adulthood.However, many children with special needs were factually ignored by their families even theywere often considered as family’s disgrace. The government, through midwives, could play arole in minimising the risks experienced by children with special needs by doing stimulation,early detection and intervention to child’s growth disruption.This research usedsocio‐legal approach with the analytical‐descriptive specification. Primarydata were obtained from interviews with Head of Health Centers (Puskesmas) of Mergangsan,Jetis and Tegalrejo beside with midwives, integrated service post (posyandu) cadres, and fiveparents of children with special needs. Secondary data were obtained from books and legalmaterials related to the research. The data were then qualitatively analysed.The results showed that the three Health Centers (Puskesmas), namelyMergangsan, Jetis andTegalrejo, had implemented the Health Minister’s Regulation Nr. 66 of 2014. The HealthCenters had programs having relations with child’s growth that was SDIDTK (stimulation, earlydetection and intervention of growth disruption). Midwives had performed their roles instimulation, early detection and intervention of growth disruption thorough examination thatwas monthly conducted together with posyandu’s activities at the Health Centers.Supporting factors of the monitoring implementation of a child’s growth, development anddevelopment disruption included health care facilities, adequate human resources (healthworkers), affordable posyandu’s costs and cross‐sectorial cooperation. The inhibiting factorswere low‐income family’s supports, unfavourable social and economic conditions and mother'sknowledge that remained poor.


2018 ◽  
pp. 175-197
Author(s):  
Zsolt Bereczki ◽  
Maria Teschler-Nicola ◽  
Antonia Marcsik ◽  
Nicholas J. Meinzer ◽  
Joerg Baten
Keyword(s):  

2018 ◽  
Vol 27 (5) ◽  
pp. 1891-1899
Author(s):  
Deniz Çetiner ◽  
Sedat Çetiner ◽  
Ahu Uraz ◽  
Gökhan H. Alpaslan ◽  
Cansu Alpaslan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document