peatland rewetting
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 8)

H-INDEX

2
(FIVE YEARS 1)

Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1200
Author(s):  
Andrey Sirin ◽  
Maria Medvedeva ◽  
Vladimir Korotkov ◽  
Victor Itkin ◽  
Tatiana Minayeva ◽  
...  

Rewetting is the most effective way to reduce greenhouse gas (GHG) emissions from drained peatlands and must significantly contribute to the implementation of the Paris Agreement on Climate within the land sector. In 2010–2013, more than 73 thousand hectares of fire-prone peatlands were rewetted in the Moscow Region (the hitherto largest rewetting program in the Northern Hemisphere). As the Russian Federation has no national accounting of rewetted areas yet, this paper presents an approach to detect them based on multispectral satellite data verified by ground truthing. We propose that effectively rewetted areas should minimally include areas with wet grasslands and those covered with water (cf. the IPCC categories “rewetted organic soils” and “flooded lands”). In 2020, these lands amounted in Moscow Region to more than 5.3 and 3.6 thousand hectares, respectively. Assuming that most rewetted areas were former peat extraction sites and using IPCC default GHG emission factors, an overall GHG emission reduction of over 36,000 tCO2-eq year−1 was calculated. We furthermore considered the uncertainty of calculations. With the example of a 1535 ha large rewetted peatland, we illustrate the estimation of GHG emission reductions for the period up to 2050. The approach presented can be used to estimate GHG emission reductions by peatland rewetting on the national, regional, and object level.


2021 ◽  
Vol 18 (3) ◽  
pp. 917-935
Author(s):  
Florian Beyer ◽  
Florian Jansen ◽  
Gerald Jurasinski ◽  
Marian Koch ◽  
Birgit Schröder ◽  
...  

Abstract. The rewetting of peatlands is regarded as an important nature-based climate solution and intended to reconcile climate protection with the restoration of self-regulating ecosystems that are resistant to climate impacts. Although the severity and frequency of droughts are predicted to increase as a consequence of climate change, it is not well understood whether such extreme events can jeopardize rewetting measures. The goal of this study was to better understand drought effects on vegetation development and the exchange of the two important greenhouse gases CO2 and CH4, especially in rewetted fens. Based on long-term reference records, we investigated anomalies in vegetation dynamics, CH4 emissions, and net CO2 exchange, including the component fluxes of ecosystem respiration (Reco) and gross ecosystem productivity (GEP), in a rewetted fen during the extreme European summer drought in 2018. Drought-induced vegetation dynamics were derived from remotely sensed data. Since flooding in 2010, the fen was characterized by a patchy mosaic of open-water surfaces and vegetated areas. After years of stagnant vegetation development, drought acted as a trigger event for pioneer species such as Tephroseris palustris and Ranunculus sceleratus to rapidly close persistent vegetation gaps. The massive spread of vegetation assimilated substantial amounts of CO2. In 2018, the annual GEP budget increased by 20 % in comparison to average years (2010–2017). Reco increased even by 40 %, but enhanced photosynthetic CO2 sequestration could compensate for half of the drought-induced increase in respiratory CO2 release. Altogether, the restored fen remained a net CO2 sink in the year of drought, though net CO2 sequestration was lower than in other years. CH4 emissions were 20 % below average on an annual basis, though stronger reduction effects occurred from August onwards, when daily fluxes were 60 % lower than in reference years. Our study reveals an important regulatory mechanism of restored fens to maintain their net CO2 sink function even in extremely dry years. It appears that, in times of more frequent climate extremes, fen restoration can create ecosystems resilient to drought. However, in order to comprehensively assess the mitigation prospects of peatland rewetting as a nature-based climate solution, further research needs to focus on the long-term effects of such extreme events beyond the actual drought period.


Author(s):  
Haojie Liu ◽  
Nicole Wrage-Mönnig ◽  
Bernd Lennartz

Abstract Nitrous oxide (N2O) is approximately 265 times more potent than carbon dioxide (CO2) in atmospheric warming. Degraded peatlands are important sources of N2O. The more a peat soil is degraded, the higher the N2O-N emissions from peat. In this study, soil bulk density was used as a proxy for peat degradation to predict N2O-N emissions. Here we report that the annual N2O-N emissions from European managed peatlands (EU-28) sum up to approximately 145 Gg N year−1. From the viewpoint of greenhouse gas emissions, highly degraded agriculturally used peatlands should be rewetted first to optimally reduce cumulative N2O-N emissions. Compared to a business-as-usual scenario (no peatland rewetting), rewetting of all drained European peatlands until 2050 using the suggested strategy reduces the cumulative N2O-N emissions by 70%. In conclusion, the status of peat degradation should be made a pivotal criterion in prioritising peatlands for restoration.


2020 ◽  
Vol 14 (2) ◽  
pp. 129-135
Author(s):  
Gina Khusnul Khotimah ◽  
◽  
Sigit Sutikno ◽  
Indradi Wijatmiko ◽  
◽  
...  

Peatlands rewetting for hydrological restoration plays an important role for fire prevention and peatland restoration of degraded peatland. One of the methods for the rewetting is canal blocking. The impact of canal blocking for peatland rewetting is further analyzed in this research. This study focused in Pulau Tebing Tinggi peatland hydrological unit (PHU), which is located in Kepulauan Meranti Regency, Riau Province. To analysis the rewetting impact, 15 dipwells were installed with the distance of 1 m, 51 m, 101 m, 201 and 301 m from the canal for each transect of the three transects. A transect was set in the downstream and two transects were set in the upstream of canal block. The ground water level (GWL) in the 15 dipwells was recorded using water-loggers for one year. This research found that canal blocking has a good effect on maintaining groundwater levels and keeping peatlands in always wet or humid conditions up to a distance of 201 m perpendicular to the canal if the rise in water level in the canal due to canal blocking is more than 0.6 m. It is able to maintain the ground water depth in peatlands around 0.4 m, where the peatlands become low risk to the fire, emission rates and subsidence.


2019 ◽  
Author(s):  
Anke Günther ◽  
Alexandra Barthelmes ◽  
Vytas Huth ◽  
Hans Joosten ◽  
Gerald Jurasinski ◽  
...  

AbstractPeatlands are strategic areas for climate change mitigation because of their matchless carbon stocks. Drained peatlands release this carbon to the atmosphere as carbon dioxide (CO2). Peatland rewetting effectively stops these CO2 emissions, but also re-establishes the emission of methane (CH4).Essentially, management must choose between CO2 emissions from drained or CH4 emissions from rewetted peatland. This choice must consider radiative effects and atmospheric lifetimes of both gases, with CO2 being a weak but persistent and CH4 a strong but short-lived greenhouse gas. The resulting climatic effects are, thus, strongly time-dependent. We used a radiative forcing model to compare forcing dynamics of global scenarios for future peatland management using areal data from the Global Peatland Database. Our results show that CH4 radiative forcing does not undermine the climate change mitigation potential of peatland rewetting. Instead, postponing rewetting increases the long-term warming effect of continued CO2 emissions. Warnings against CH4 emissions from rewetted peatlands are therefore unjustified and counterproductive.


2018 ◽  
Vol 146 ◽  
pp. 766-771 ◽  
Author(s):  
Anke Günther ◽  
Stefanie Böther ◽  
John Couwenberg ◽  
Silke Hüttel ◽  
Gerald Jurasinski

Sign in / Sign up

Export Citation Format

Share Document