undulatory locomotion
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 17)

H-INDEX

16
(FIVE YEARS 2)

PLoS Biology ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. e3001420
Author(s):  
Dimitri A. Skandalis ◽  
Elias T. Lunsford ◽  
James C. Liao

Animals modulate sensory processing in concert with motor actions. Parallel copies of motor signals, called corollary discharge (CD), prepare the nervous system to process the mixture of externally and self-generated (reafferent) feedback that arises during locomotion. Commonly, CD in the peripheral nervous system cancels reafference to protect sensors and the central nervous system from being fatigued and overwhelmed by self-generated feedback. However, cancellation also limits the feedback that contributes to an animal’s awareness of its body position and motion within the environment, the sense of proprioception. We propose that, rather than cancellation, CD to the fish lateral line organ restructures reafference to maximize proprioceptive information content. Fishes’ undulatory body motions induce reafferent feedback that can encode the body’s instantaneous configuration with respect to fluid flows. We combined experimental and computational analyses of swimming biomechanics and hair cell physiology to develop a neuromechanical model of how fish can track peak body curvature, a key signature of axial undulatory locomotion. Without CD, this computation would be challenged by sensory adaptation, typified by decaying sensitivity and phase distortions with respect to an input stimulus. We find that CD interacts synergistically with sensor polarization to sharpen sensitivity along sensors’ preferred axes. The sharpening of sensitivity regulates spiking to a narrow interval coinciding with peak reafferent stimulation, which prevents adaptation and homogenizes the otherwise variable sensor output. Our integrative model reveals a vital role of CD for ensuring precise proprioceptive feedback during undulatory locomotion, which we term external proprioception.


Author(s):  
Liangliang Zhu ◽  
Pengfei Yang ◽  
Feng Li ◽  
Kai Wang ◽  
Langquan Shui ◽  
...  

Author(s):  
Wenyu Zuo ◽  
Frank Fish ◽  
Zheng Chen

Abstract This paper presents the design, modeling, and control of a three-joint robotic fish propelled by a Double-Slider-Crank (DSC) driven caudal fin. DSC is a mechanism that can use one DC motor to achieve oscillating foil propulsion. Its design is guided by a traveling wave equation that mimics a fish’s undulatory locomotion. After multiple tests, the robotic fish displayed good performance in mimicking a real fish’s swimming motion. DSC mechanism is proven to be an effective propulsion technique for a robotic fish. With the help of another servo motor at the first joint of the fish’s tail, the robotic fish can have a two-dimensional free-swimming capability. In experiments, the robotic fish can achieve a swimming speed of 0.35 m/s at 3 Hz, equivalent to 0.98 body length (BL) per second. Its steering rate is proportional to a bias angle. The DSC benefits the control of the robotic fish by independently adjusting its steering and swimming speed. This characteristic is studied in a hydrodynamic model that derives the thrust within a DSC frame. Besides the dynamic model, a semi-physics-based and data-driven linear model is established to connect bias angle to robotic fish’s heading angle. The linear model is used for designing a state feedback control, and the controller has been examined in simulation and experiments.


Author(s):  
Hyung-Soo Kim ◽  
Jae-Kyung Heo ◽  
In-Gyu Choi ◽  
Sung-Hoon Ahn ◽  
Won-Shik Chu

2021 ◽  
Author(s):  
Yasemin Ozkan-Aydin ◽  
Bangyuan Liu ◽  
Alexandra Carruthers Ferrero ◽  
Max Seidel ◽  
Frank L. Hammond ◽  
...  

AbstractEarthworms (Lumbricus terrestris) are characterized by soft, highly flexible and extensible bodies, and are capable of locomoting in most terrestrial environments. Previous studies of earthworm movement have focused on the use of retrograde peristaltic gaits in which controlled contraction of longitudinal and circular muscles results in waves of shortening/thickening and thinning/lengthening of the hydrostatic skeleton. These waves can propel the animal across ground as well as into soil. However, worms can also benefit from axial body bends during locomotion. Such lateral undulation dynamics can aid locomotor function via hooking/anchoring (to provide propulsion), modify travel orientation (to avoid obstacles and generate turns) and even generate snake-like undulatory locomotion in environments where peristaltic locomotion results in poor performance. To the best of our knowledge, the important aspects of locomotion associated with the lateral undulation of an earthworm body are yet to be systematically investigated. In this study, we observed that within confined environments, the worm uses lateral undulation to anchor its body to the walls of their burrows and tip (nose) bending to search the environment. This relatively simple locomotion strategy drastically improved the performance of our soft bodied robophysical model of the earthworm both in a confined (in an acrylic tube) and above-ground heterogeneous environment (rigid pegs), where the peristaltic gait often fails. In summary, lateral undulation facilitates the mobility of earthworm locomotion in diverse environments and can play an important role in the creation of low cost soft robotic devices capable of traversing a variety of environments.


eNeuro ◽  
2020 ◽  
pp. ENEURO.0241-20.2020
Author(s):  
Lan Deng ◽  
Jack Denham ◽  
Charu Arya ◽  
Omer Yuval ◽  
Netta Cohen ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Perrin E Schiebel ◽  
Henry C Astley ◽  
Jennifer M Rieser ◽  
Shashank Agarwal ◽  
Christian Hubicki ◽  
...  

While terrestrial locomotors often contend with permanently deformable substrates like sand, soil, and mud, principles of motion on such materials are lacking. We study the desert-specialist shovel-nosed snake traversing a model sand and find body inertia is negligible despite rapid transit and speed dependent granular reaction forces. New surface resistive force theory (RFT) calculation reveals how wave shape in these snakes minimizes material memory effects and optimizes escape performance given physiological power limitations. RFT explains the morphology and waveform-dependent performance of a diversity of non-sand-specialist snakes but overestimates the capability of those snakes which suffer high lateral slipping of the body. Robophysical experiments recapitulate aspects of these failure-prone snakes and elucidate how re-encountering previously deformed material hinders performance. This study reveals how memory effects stymied the locomotion of a diversity of snakes in our previous studies (Marvi et al., 2014) and indicates avenues to improve all-terrain robots.


Author(s):  
Lan Deng ◽  
Jack Denham ◽  
Charu Arya ◽  
Omer Yuval ◽  
Netta Cohen ◽  
...  

AbstractInhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contraction of antagonist muscles, whether along the body axis or within and among limbs. In the nematode C. elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low and high undulation frequencies. During low undulation frequency, GABAergic VD and DD motoneurons show similar activity patterns, while during high undulation frequency, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or inhibitory reset.Significance StatementInhibition serves multiple roles in the generation, maintenance, and modulation of the locomotive program and supports the alternating activation of antagonistic muscles. When the locomotor frequency increases, more inhibition is required. To better understand the role of inhibition in locomotion, we used C. elegans as an animal model, and challenged a prevalent hypothesis that cross-inhibition supports the dorsoventral alternation. We find that inhibition is related to the speed rather than the direction of locomotion and demonstrate that inhibition is unnecessary for muscle alternation during slow undulation in either direction but crucial to sustain rapid dorsoventral alternation. We combined calcium imaging of motoneurons and muscle with computational models to test hypotheses for the role of inhibition in locomotion.


Sign in / Sign up

Export Citation Format

Share Document