scholarly journals Inhibition underlies fast undulatory locomotion in C. elegans

Author(s):  
Lan Deng ◽  
Jack Denham ◽  
Charu Arya ◽  
Omer Yuval ◽  
Netta Cohen ◽  
...  

AbstractInhibition plays important roles in modulating the neural activities of sensory and motor systems at different levels from synapses to brain regions. To achieve coordinated movement, motor systems produce alternating contraction of antagonist muscles, whether along the body axis or within and among limbs. In the nematode C. elegans, a small network involving excitatory cholinergic and inhibitory GABAergic motoneurons generates the dorsoventral alternation of body-wall muscles that supports undulatory locomotion. Inhibition has been suggested to be necessary for backward undulation because mutants that are defective in GABA transmission exhibit a shrinking phenotype in response to a harsh touch to the head, whereas wild-type animals produce a backward escape response. Here, we demonstrate that the shrinking phenotype is exhibited by wild-type as well as mutant animals in response to harsh touch to the head or tail, but only GABA transmission mutants show slow locomotion after stimulation. Impairment of GABA transmission, either genetically or optogenetically, induces lower undulation frequency and lower translocation speed during crawling and swimming in both directions. The activity patterns of GABAergic motoneurons are different during low and high undulation frequencies. During low undulation frequency, GABAergic VD and DD motoneurons show similar activity patterns, while during high undulation frequency, their activity alternates. The experimental results suggest at least three non-mutually exclusive roles for inhibition that could underlie fast undulatory locomotion in C. elegans, which we tested with computational models: cross-inhibition or disinhibition of body-wall muscles, or inhibitory reset.Significance StatementInhibition serves multiple roles in the generation, maintenance, and modulation of the locomotive program and supports the alternating activation of antagonistic muscles. When the locomotor frequency increases, more inhibition is required. To better understand the role of inhibition in locomotion, we used C. elegans as an animal model, and challenged a prevalent hypothesis that cross-inhibition supports the dorsoventral alternation. We find that inhibition is related to the speed rather than the direction of locomotion and demonstrate that inhibition is unnecessary for muscle alternation during slow undulation in either direction but crucial to sustain rapid dorsoventral alternation. We combined calcium imaging of motoneurons and muscle with computational models to test hypotheses for the role of inhibition in locomotion.

2003 ◽  
Vol 161 (4) ◽  
pp. 757-768 ◽  
Author(s):  
Julia M. Bosher ◽  
Bum-Soo Hahn ◽  
Renaud Legouis ◽  
Satis Sookhareea ◽  
Robby M. Weimer ◽  
...  

Morphogenesis of the Caenorhabditis elegans embryo is driven by actin microfilaments in the epidermis and by sarcomeres in body wall muscles. Both tissues are mechanically coupled, most likely through specialized attachment structures called fibrous organelles (FOs) that connect muscles to the cuticle across the epidermis. Here, we report the identification of new mutations in a gene known as vab-10, which lead to severe morphogenesis defects, and show that vab-10 corresponds to the C. elegans spectraplakin locus. Our analysis of vab-10 reveals novel insights into the role of this plakin subfamily. vab-10 generates isoforms related either to plectin (termed VAB-10A) or to microtubule actin cross-linking factor plakins (termed VAB-10B). Using specific antibodies and mutations, we show that VAB-10A and VAB-10B have distinct distributions and functions in the epidermis. Loss of VAB-10A impairs the integrity of FOs, leading to epidermal detachment from the cuticle and muscles, hence demonstrating that FOs are functionally and molecularly related to hemidesmosomes. We suggest that this isoform protects against forces external to the epidermis. In contrast, lack of VAB-10B leads to increased epidermal thickness during embryonic morphogenesis when epidermal cells change shape. We suggest that this isoform protects cells against tension that builds up within the epidermis.


2020 ◽  
Author(s):  
Heather L. Bennett ◽  
Patrick D. McClanahan ◽  
Christopher Fang-Yen ◽  
Robert G. Kalb

AbstractFor most metazoans, oxygen deprivation leads to cell dysfunction and if severe, death. Sublethal stress prior to a hypoxic or anoxic insult (“preconditioning”) can protect cells from subsequent oxygen deprivation. The molecular mechanisms by which sublethal stress can buffer against a subsequent toxic insult and the role of the nervous system in the response are not well understood. We studied the role of neuronal activity preconditioning to oxygen deprivation in C. elegans. Animals expressing the histamine gated chloride channels (HisCl1) in select cell populations were used to temporally and spatially inactivate the nervous system or tissue prior to an anoxic insult. We find that inactivation of the nervous system for 3 hours prior to the insult confers resistance to a 48-hour anoxic insult in 4th-stage larval animals. Experiments show that this resistance can be attributed to loss of activity in cholinergic and GABAergic neurons as well as in body wall muscles. These observations indicate that the nervous system activity can mediate the organism’s response to anoxia.


Development ◽  
1991 ◽  
Vol 111 (3) ◽  
pp. 667-681 ◽  
Author(s):  
P.Y. Goh ◽  
T. Bogaert

As part of a general study of genes specifying a pattern of muscle attachments, we identified and genetically characterised mutants in the mup-1 gene. The body wall muscles of early stage mup-1 embryos have a wild-type myofilament pattern but may extend ectopic processes. Later in embryogenesis, some body wall muscles detach from the hypodermis. Genetic analysis suggests that mup-1 has both a maternal and a zygotic component and is not required for postembryonic muscle growth and attachment. mup-1 mutants are suppressed by mutations in several genes that encode extracellular matrix components. We propose that mup-1 may encode a cell surface/extracellular matrix molecule required both for the positioning of body wall muscle attachments in early embryogenesis and the subsequent maintenance of these attachments to the hypodermis until after cuticle synthesis.


2019 ◽  
Vol 7 (2) ◽  
pp. 8 ◽  
Author(s):  
DiLoreto ◽  
Chute ◽  
Bryce ◽  
Srinivasan

The complete structure and connectivity of the Caenorhabditis elegans nervous system (“mind of a worm”) was first published in 1986, representing a critical milestone in the field of connectomics. The reconstruction of the nervous system (connectome) at the level of synapses provided a unique perspective of understanding how behavior can be coded within the nervous system. The following decades have seen the development of technologies that help understand how neural activity patterns are connected to behavior and modulated by sensory input. Investigations on the developmental origins of the connectome highlight the importance of role of neuronal cell lineages in the final connectivity matrix of the nervous system. Computational modeling of neuronal dynamics not only helps reconstruct the biophysical properties of individual neurons but also allows for subsequent reconstruction of whole-organism neuronal network models. Hence, combining experimental datasets with theoretical modeling of neurons generates a better understanding of organismal behavior. This review discusses some recent technological advances used to analyze and perturb whole-organism neuronal function along with developments in computational modeling, which allows for interrogation of both local and global neural circuits, leading to different behaviors. Combining these approaches will shed light into how neural networks process sensory information to generate the appropriate behavioral output, providing a complete understanding of the worm nervous system.


2001 ◽  
Vol 155 (7) ◽  
pp. 1109-1116 ◽  
Author(s):  
Eva Hannak ◽  
Matthew Kirkham ◽  
Anthony A. Hyman ◽  
Karen Oegema

Centrosomes mature as cells enter mitosis, accumulating γ-tubulin and other pericentriolar material (PCM) components. This occurs concomitant with an increase in the number of centrosomally organized microtubules (MTs). Here, we use RNA-mediated interference (RNAi) to examine the role of the aurora-A kinase, AIR-1, during centrosome maturation in Caenorhabditis elegans. In air-1(RNAi) embryos, centrosomes separate normally, an event that occurs before maturation in C. elegans. After nuclear envelope breakdown, the separated centrosomes collapse together, and spindle assembly fails. In mitotic air-1(RNAi) embryos, centrosomal α-tubulin fluorescence intensity accumulates to only 40% of wild-type levels, suggesting a defect in the maturation process. Consistent with this hypothesis, we find that AIR-1 is required for the increase in centrosomal γ-tubulin and two other PCM components, ZYG-9 and CeGrip, as embryos enter mitosis. Furthermore, the AIR-1–dependent increase in centrosomal γ-tubulin does not require MTs. These results suggest that aurora-A kinases are required to execute a MT-independent pathway for the recruitment of PCM during centrosome maturation.


Development ◽  
1995 ◽  
Vol 121 (9) ◽  
pp. 2917-2922 ◽  
Author(s):  
G. Yamada ◽  
A. Mansouri ◽  
M. Torres ◽  
E.T. Stuart ◽  
M. Blum ◽  
...  

The goosecoid gene encodes a homeodomain-containing protein that has been identified in a number of species and has been implicated in a variety of key developmental processes. Initially suggested to be involved in organizing the embryo during early development, goosecoid has since been demonstrated to be expressed during organogenesis-most notably in the head, the limbs and the ventrolateral body wall. To investigate the role of goosecoid in embryonic development, we have inactivated the gene by gene targeting to generate mice mutant for the goosecoid gene. Mice that are homozygous for the goosecoid mutation do not display a gastrulation phenotype and are born; however, they do not survive more than 24 hours. Analysis of the homozygotes revealed numerous developmental defects affecting those structures in which goosecoid is expressed during its second (late) phase of embryonic expression. Predominantly, these defects involve the lower mandible and its associated musculature including the tongue, the nasal cavity and the nasal pits, as well as the components of the inner ear (malleus, tympanic ring) and the external auditory meatus. Although the observed phenotype is in accordance with the late expression domains of goosecoid in wild-type embryos, we suggest that the lack of an earlier phenotype is the result of functional compensation by other genes.


2000 ◽  
Vol 113 (22) ◽  
pp. 3947-3958 ◽  
Author(s):  
J.H. Cho ◽  
Y.S. Oh ◽  
K.W. Park ◽  
J. Yu ◽  
K.Y. Choi ◽  
...  

Calsequestrin is the major calcium-binding protein of cardiac and skeletal muscles whose function is to sequester Ca(2+)in the lumen of the sarcoplasmic reticulum (SR). Here we describe the identification and functional characterization of a C. elegans calsequestrin gene (csq-1). CSQ-1 shows moderate similarity (50% similarity, 30% identity) to rabbit skeletal calsequestrin. Unlike mammals, which have two different genes encoding cardiac and fast-twitch skeletal muscle isoforms, csq-1 is the only calsequestrin gene in the C. elegans genome. We show that csq-1 is highly expressed in the body-wall muscles, beginning in mid-embryogenesis and maintained through the adult stage. In body-wall muscle cells, CSQ-1 is localized to sarcoplasmic membranes surrounding sarcomeric structures, in the regions where ryanodine receptors (UNC-68) are located. Mutation in UNC-68 affects CSQ-1 localization, suggesting that the two possibly interact in vivo. Genetic analyses of chromosomal deficiency mutants deleting csq-1 show that CSQ-1 is not essential for initiation of embryonic muscle formation and contraction. Furthermore, double-stranded RNA injection resulted in animals completely lacking CSQ-1 in body-wall muscles with no observable defects in locomotion. These findings suggest that although CSQ-1 is one of the major calcium-binding proteins in the body-wall muscles of C. elegans, it is not essential for body-wall muscle formation and contraction.


Author(s):  
Ashley A. Martin ◽  
Simon Alford ◽  
Janet E. Richmond

1988 ◽  
Vol 106 (6) ◽  
pp. 1985-1995 ◽  
Author(s):  
H F Epstein ◽  
G C Berliner ◽  
D L Casey ◽  
I Ortiz

The thick filaments of the nematode, Caenorhabditis elegans, arising predominantly from the body-wall muscles, contain two myosin isoforms and paramyosin as their major proteins. The two myosins are located in distinct regions of the surfaces, while paramyosin is located within the backbones of the filaments. Tubular structures constitute the cores of the polar regions, and electron-dense material is present in the cores of the central regions (Epstein, H.F., D.M. Miller, I. Ortiz, and G.C. Berliner. 1985. J. Cell Biol. 100:904-915). Biochemical, genetic, and immunological experiments indicate that the two myosins and paramyosin are not necessary core components (Epstein, H.F., I. Ortiz, and L.A. Traeger Mackinnon. 1986. J. Cell Biol. 103:985-993). The existence of the core structures suggests, therefore, that additional proteins may be associated with thick filaments in C. elegans. To biochemically detect minor associated proteins, a new procedure for the isolation of thick filaments of high purity and structural preservation has been developed. The final step, glycerol gradient centrifugation, yielded fractions that are contaminated by, at most, 1-2% with actin, tropomyosin, or ribosome-associated proteins on the basis of Coomassie Blue staining and electron microscopy. Silver staining and radioautography of gel electrophoretograms of unlabeled and 35S-labeled proteins, respectively, revealed at least 10 additional bands that cosedimented with thick filaments in glycerol gradients. Core structures prepared from wild-type thick filaments contained at least six of these thick filament-associated protein bands. The six proteins also cosedimented with thick filaments purified by gradient centrifugation from CB190 mutants lacking myosin heavy chain B and from CB1214 mutants lacking paramyosin. For these reasons, we propose that the six associated proteins are potential candidates for putative components of core structures in the thick filaments of body-wall muscles of C. elegans.


2018 ◽  
Author(s):  
Fernando Calahorro ◽  
Francesca Keefe ◽  
James Dillon ◽  
Lindy Holden-Dye ◽  
Vincent O’Connor

ABSTRACTThe integration of distinct sensory modalities is essential for behavioural decision making. In C. elegans this process is coordinated by neural circuits that integrate sensory cues from the environment to generate an appropriate behaviour at the appropriate output muscles. Food is a multimodal cue that impacts on the microcircuits to modulating feeding and foraging drivers at the level of the pharyngeal and body wall muscle respectively. When food triggers an upregulation in pharyngeal pumping it allows the effective ingestion of food. Here we show that a C. elegans mutant in the single orthologous gene of human neuroligins, nlg-1 are defective in food induced pumping. This is not explained by an inability to sense food, as nlg-1 mutants are not defective in chemotaxis towards bacteria. In addition, we show that neuroligin is widely expressed in the nervous system including AIY, ADE, ALA, URX and HSN neurones. Interestingly, despite the deficit in pharyngeal pumping neuroligin is not expressed within the pharyngeal neuromuscular network, which suggests an extrapharyngeal regulation of this circuit. We resolve electrophysiologically the neuroligin contribution to the pharyngeal circuit by mimicking a food-dependent pumping, and show that the nlg-1 phenotype is similar to mutants impaired in GABAergic and/or glutamatergic signalling. We suggest that neuroligin organizes extrapharyngeal circuits that regulate the pharynx. These observations based on the molecular and cellular determinants of feeding are consistent with the emerging role of neuroligin in discretely impacting functional circuits underpinning complex behaviours.


Sign in / Sign up

Export Citation Format

Share Document