scholarly journals Upper Bounds for the Capacity for Severely Fading MIMO Channels under a Scale Mixture Assumption

Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 845
Author(s):  
Johannes T. Ferreira

A cornerstone in the modeling of wireless communication is MIMO systems, where a complex matrix variate normal assumption is often made for the underlying distribution of the propagation matrix. A popular measure of information, namely capacity, is often investigated for the performance of MIMO designs. This paper derives upper bounds for this measure of information for the case of two transmitting antennae and an arbitrary number of receiving antennae when the propagation matrix is assumed to follow a scale mixture of complex matrix variate normal distribution. Furthermore, noncentrality is assumed to account for LOS scenarios within the MIMO environment. The insight of this paper illustrates the theoretical form of capacity under these key assumptions and paves the way for considerations of alternative distributional choices for the channel propagation matrix in potential cases of severe fading, when the assumption of normality may not be realistic.

2021 ◽  
Author(s):  
◽  
Ramoni Ojekunle Adeogun

<p>Temporal variation and frequency selectivity of wireless channels constitute a major drawback to the attainment of high gains in capacity and reliability offered by multiple antennas at the transmitter and receiver of a mobile communication system. Limited feedback and adaptive transmission schemes such as adaptive modulation and coding, antenna selection, power allocation and scheduling have the potential to provide the platform of attaining the high transmission rate, capacity and QoS requirements in current and future wireless communication systems. Theses schemes require both the transmitter and receiver to have accurate knowledge of Channel State Information (CSI). In Time Division Duplex (TDD) systems, CSI at the transmitter can be obtained using channel reciprocity. In Frequency Division Duplex (FDD) systems, however, CSI is typically estimated at the receiver and fed back to the transmitter via a low-rate feedback link. Due to the inherent time delays in estimation, processing and feedback, the CSI obtained from the receiver may become outdated before its actual usage at the transmitter. This results in significant performance loss, especially in high mobility environments. There is therefore a need to extrapolate the varying channel into the future, far enough to account for the delay and mitigate the performance degradation. The research in this thesis investigates parametric modeling and prediction of mobile MIMO channels for both narrowband and wideband systems. The focus is on schemes that utilize the additional spatial information offered by multiple sampling of the wave-field in multi-antenna systems to aid channel prediction. The research has led to the development of several algorithms which can be used for long range extrapolation of time-varyingchannels. Based on spatial channel modeling approaches, simple and efficient methods for the extrapolation of narrowband MIMO channels are proposed. Various extensions were also developed. These include methods for wideband channels, transmission using polarized antenna arrays, and mobile-to-mobile systems. Performance bounds on the estimation and prediction error are vital when evaluating channel estimation and prediction schemes. For this purpose, analytical expressions for bound on the estimation and prediction of polarized and non-polarized MIMO channels are derived. Using the vector formulation of the Cramer Rao bound for function of parameters, readily interpretable closed-form expressions for the prediction error bounds were found for cases with Uniform Linear Array (ULA) and Uniform Planar Array (UPA). The derived performance bounds are very simple and so provide insight into system design. The performance of the proposed algorithms was evaluated using standardized channel models. The effects of the temporal variation of multipath parameters on prediction is studied and methods for jointly tracking the channel parameters are developed. The algorithms presented can be utilized to enhance the performance of limited feedback and adaptive MIMO transmission schemes.</p>


2019 ◽  
Vol 29 (8) ◽  
pp. 2250-2268
Author(s):  
Moritz Berger ◽  
Matthias Schmid

In medical studies one frequently encounters ratio outcomes. For modeling these right-skewed positive variables, two approaches are in common use. The first one assumes that the outcome follows a normal distribution after transformation (e.g. a log-normal distribution), and the second one assumes gamma distributed outcome values. Classical regression approaches relate the mean ratio to a set of explanatory variables and treat the other parameters of the underlying distribution as nuisance parameters. Here, more flexible extensions for modeling ratio outcomes are proposed that allow to relate all the distribution parameters to explanatory variables. The models are embedded into the framework of generalized additive models for location, scale and shape (GAMLSS), and can be fitted using a component-wise gradient boosting algorithm. The added value of the new modeling approach is demonstrated by the analysis of the LDL/HDL cholesterol ratio, which is a strong predictor of cardiovascular events, using data from the German Chronic Kidney Disease Study. Particularly, our results confirm various important findings on risk factors for cardiovascular events.


1981 ◽  
Vol 18 (04) ◽  
pp. 853-863
Author(s):  
Moshe Shaked

In a series of recent papers, Heyde (1975), Heyde and Leslie (1976), Hall (1979) and Brown (1980) obtained upper bounds on the uniform distance of a scale mixture from its parent distribution. Using a different technique we obtain further bounds which are more meaningful and superior in some applications. The new technique is then applied to obtain bounds on the uniform distance of a location mixture from its parent distribution. Comparison of the new bounds and the earlier ones is given.


2015 ◽  
Vol 32 (5) ◽  
pp. 1216-1252 ◽  
Author(s):  
Anil K. Bera ◽  
Antonio F. Galvao ◽  
Liang Wang ◽  
Zhijie Xiao

We study the asymptotic covariance function of the sample mean and quantile, and derive a new and surprising characterization of the normal distribution: the asymptotic covariance between the sample mean and quantile is constant across all quantiles,if and only ifthe underlying distribution is normal. This is a powerful result and facilitates statistical inference. Utilizing this result, we develop a new omnibus test for normality based on the quantile-mean covariance process. Compared to existing normality tests, the proposed testing procedure has several important attractive features. Monte Carlo evidence shows that the proposed test possesses good finite sample properties. In addition to the formal test, we suggest a graphical procedure that is easy to implement and visualize in practice. Finally, we illustrate the use of the suggested techniques with an application to stock return datasets.


1981 ◽  
Vol 18 (4) ◽  
pp. 853-863 ◽  
Author(s):  
Moshe Shaked

In a series of recent papers, Heyde (1975), Heyde and Leslie (1976), Hall (1979) and Brown (1980) obtained upper bounds on the uniform distance of a scale mixture from its parent distribution. Using a different technique we obtain further bounds which are more meaningful and superior in some applications. The new technique is then applied to obtain bounds on the uniform distance of a location mixture from its parent distribution. Comparison of the new bounds and the earlier ones is given.


Author(s):  
Shree Krishna Acharya

Finding a good MIMO system model also major issue in Wireless Communication system. It is facing with so many problem, one of the major problem is finding good system model in terms of capacity. In this paper, we analyze the channel capacity of various MIMO system model with some constant SNR level and outage probability. We establish a novel idea for MIMO system models as consider as 2N- MIMO system model with constant SNR and outage probability. The channel capacity ratio is presented here on the basis of 2N- MIMO channel capacity model. Analysis of various MIMO system model show that it is better to use NT×NR MIMO system model then two NT/2×NR/2 MIMO system model in terms of channel capacity but it is not good for higher value of NT×NR


2017 ◽  
Vol 5 (6) ◽  
pp. 368-377
Author(s):  
Kalpesh S. Tailor

Moderate distribution proposed by Naik V.D and Desai J.M., is a sound alternative of normal distribution, which has mean and mean deviation as pivotal parameters and which has properties similar to normal distribution. Mean deviation (δ) is a very good alternative of standard deviation (σ) as mean deviation is considered to be the most intuitively and rationally defined measure of dispersion. This fact can be very useful in the field of quality control to construct the control limits of the control charts. On the basis of this fact Naik V.D. and Tailor K.S. have proposed 3δ control limits. In 3δ control limits, the upper and lower control limits are set at 3δ distance from the central line where δ is the mean deviation of sampling distribution of the statistic being used for constructing the control chart. In this paper assuming that the underlying distribution of the variable of interest follows moderate distribution proposed by Naik V.D and Desai J.M, 3δ control limits of sample standard deviation(s) chart are derived. Also the performance analysis of the control chart is carried out with the help of OC curve analysis and ARL curve analysis.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Athar Waseem ◽  
Aqdas Naveed ◽  
Sardar Ali ◽  
Muhammad Arshad ◽  
Haris Anis ◽  
...  

Massive multiple-input multiple-output (MIMO) is believed to be a key technology to get 1000x data rates in wireless communication systems. Massive MIMO occupies a large number of antennas at the base station (BS) to serve multiple users at the same time. It has appeared as a promising technique to realize high-throughput green wireless communications. Massive MIMO exploits the higher degree of spatial freedom, to extensively improve the capacity and energy efficiency of the system. Thus, massive MIMO systems have been broadly accepted as an important enabling technology for 5th Generation (5G) systems. In massive MIMO systems, a precise acquisition of the channel state information (CSI) is needed for beamforming, signal detection, resource allocation, etc. Yet, having large antennas at the BS, users have to estimate channels linked with hundreds of transmit antennas. Consequently, pilot overhead gets prohibitively high. Hence, realizing the correct channel estimation with the reasonable pilot overhead has become a challenging issue, particularly for frequency division duplex (FDD) in massive MIMO systems. In this paper, by taking advantage of spatial and temporal common sparsity of massive MIMO channels in delay domain, nonorthogonal pilot design and channel estimation schemes are proposed under the frame work of structured compressive sensing (SCS) theory that considerably reduces the pilot overheads for massive MIMO FDD systems. The proposed pilot design is fundamentally different from conventional orthogonal pilot designs based on Nyquist sampling theorem. Finally, simulations have been performed to verify the performance of the proposed schemes. Compared to its conventional counterparts with fewer pilots overhead, the proposed schemes improve the performance of the system.


2020 ◽  
Vol 29 (9) ◽  
pp. 2411-2444
Author(s):  
Anna R S Marinho ◽  
Rosangela H Loschi

Cure fraction models have been widely used to model time-to-event data when part of the individuals survives long-term after disease and are considered cured. Most cure fraction models neglect the measurement error that some covariates may experience which leads to poor estimates for the cure fraction. We introduce a Bayesian promotion time cure model that accounts for both mismeasured covariates and atypical measurement errors. This is attained by assuming a scale mixture of the normal distribution to describe the uncertainty about the measurement error. Extending previous works, we also assume that the measurement error variance is unknown and should be estimated. Three classes of prior distributions are assumed to model the uncertainty about the measurement error variance. Simulation studies are performed evaluating the proposed model in different scenarios and comparing it to the standard promotion time cure fraction model. Results show that the proposed models are competitive ones. The proposed model is fitted to analyze a dataset from a melanoma clinical trial assuming that the Breslow depth is mismeasured.


Sign in / Sign up

Export Citation Format

Share Document