scholarly journals Vegetative and Edaphic Responses in a Northern Mixed Conifer Forest Three Decades after Harvest and Fire: Implications for Managing Regeneration and Carbon and Nitrogen Pools

Forests ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1040
Author(s):  
R. Kasten Dumroese ◽  
Martin F. Jurgensen ◽  
Deborah S. Page-Dumroese

Research Highlights: This experiment compares a range of combinations of harvest, prescribed fire, and wildfire. Leveraging a 30-year-old forest management-driven experiment, we explored the recovery of woody species composition, regeneration of the charismatic forest tree species Larix occidentalis Nutt., and vegetation and soil carbon (C) and nitrogen (N) pools. Background and Objectives: Initiated in 1967, this experiment intended to explore combinations of habitat type phases and prescribed fire severity toward supporting regeneration of L. occidentalis. At onset of the experiment, a wildfire affected a portion of the 60 research plots, allowing for additional study. Our objective was to better understand silvicultural practices to support L. occidentalis regeneration and to better understand the subsequent impacts of silvicultural practices on C and N pools within the vegetation and soil. Materials and Methods: We categorized disturbance severity based on loss of forest floor depth; 11 categories were defined, including controls for the two habitat type phases involved. We collected abundance, biomass, and C and N concentrations for the herbaceous layer, shrubs, and trees using nested quadrats and 6 to 10 experimental units per disturbance category plot. Moreover, we systematically sampled woody residue from transects, and forest floor, soil wood, and mineral soil with a systematic grid of 16 soil cores per disturbance category plot. Results: We found that (1) disturbance severity affected shrub species richness, diversity, and evenness within habitat type phases; (2) L. occidentalis regenerates when fire is part of the disturbance; (3) N-fixing shrub species were more diverse in the hotter, drier plots; (4) recovery levels of C and N pools within the soil had surpassed or were closer to pre-disturbance levels than pools within the vegetation. Conclusions: We confirm that L. occidentalis regeneration and a diverse suite of understory shrub species can be supported by harvest and prescribed fire, particularly in southern and western aspects. We also conclude that these methods can regenerate L. occidentalis in cooler, moister sites, which may be important as this species’ climate niche shifts with climate change.


2004 ◽  
Vol 34 (3) ◽  
pp. 509-518 ◽  
Author(s):  
J Bauhus ◽  
T Vor ◽  
N Bartsch ◽  
A Cowling

Despite the importance of gaps in the dynamics and management of many forest types, very little is known about the medium- to long-term soil C and N dynamics associated with this disturbance. This study was designed to test the hypothesis that gap creation and lime application, a routine measure in many European forests to ameliorate soil acidity, lead to accelerated litter decomposition and thus a reduction in the forest floor and soil C and N pools. Four gaps were created in 1989 in a mature European beech (Fagus sylvatica L.) forest on acid soil with a moder humus, and lime (3 t dolomite·ha–1) was applied to two of these and surrounding areas. Litter and fine-root decomposition was measured in 1992–1993 and 1996–1998 using litterbags. Forest floor (L, F, and H layers) and mineral soil (0–40 cm) C and N pools were determined in 1989 and 1997. Eight years following silvicultural treatments, there was no change in C and N over the entire forest soil profile including forest floor. Reductions in the F and H layers in limed gaps were compensated for by increases in soil C and N in the surface (0–10 cm) mineral soil. Decomposition of F litter was significantly accelerated in limed gaps, leading to the development of a mull–moder, whereas gap creation alone had no effect on mass loss of F material in litterbags. Gap size disturbances in this acid beech forest appear to have minimal influences on soil C and N stocks. However, when combined with liming, changes in the humus form and vertical distribution of soil C and N may occur.



Forests ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 181
Author(s):  
John R. Butnor ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
C. Dana Nelson

Prescribed fire is an essential tool that is widely used for longleaf pine (Pinus palustris Mill.) stand management; periodic burning serves to reduce competition from woody shrubs and fire-intolerant trees and enhance herbaceous diversity. Low-intensity, prescribed burning is thought to have minimal long-term impact on soil chemistry in southern pine forests, although few studies report the intra-annual variation in soil chemistry after burning. We monitored changes in C, N, oxidation resistant C (CR), pH and elemental nutrients in the forest floor and soil (0–5, 5–10 cm depths) before and after burning (1, 3, 6, 12 months) in a mature longleaf pine plantation at the Harrison Experimental Forest, near Saucier, Mississippi. Prescribed fire consumed much of the forest floor (11.3 Mg ha−1; −69%), increased soil pH and caused a pulse of C, N and elemental nutrients to flow to the near surface soils. In the initial one to three months post-burn coinciding with the start of the growing season, retention of nutrients by soil peaked. Most of the N (93%), Ca (88%), K (96%) and Mg (101%), roughly half of the P (48%) and Mn (52%) and 25% of the C lost from the forest floor were detected in the soil and apparently not lost to volatilization. By month 12, soil C and N pools were not different at depths of 0–5 cm but declined significantly below pre-burn levels at depths of 5–10 cm, C −36% (p < 0.0001), N −26% (p = 0.003), contrary to other examples in southern pine ecosystems. In the upper 5 cm of soil, only Cu (−49%) remained significantly lower than pre-burn contents by month 12, at depths of 5–10 cm, Cu (−76%), Fe (−22%), K (−51%), Mg (−57%), Mn (−82%) and P (−52%) remain lower at month 12 than pre-burn contents. Burning did not increase soil CR content, conversely significant declines in CR occurred. It appears that recovery of soil C and N pools post-burn will require more time on this site than other southern pine forests.



2006 ◽  
Vol 36 (9) ◽  
pp. 2270-2284 ◽  
Author(s):  
Deborah S Page-Dumroese ◽  
Martin F Jurgensen

When sampling woody residue (WR) and organic matter (OM) present in forest floor, soil wood, and surface mineral soil (0–30 cm) in 14 mid- to late-successional stands across a wide variety of soil types and climatic regimes in the northwestern USA, we found that 44%–84% of carbon (C) was in WR and surface OM, whereas >80% of nitrogen (N) was in the mineral soil. In many northwestern forests fire suppression and natural changes in stand composition have increased the amounts of WR and soil OM susceptible to wildfire losses. Stands with high OM concentrations on the soil surface are at greater risk of losing large amounts of C and N after high-severity surface fires. Using the USDA Forest Service Regional Soil Quality Standards and Guidelines, we estimate that 6%–80% of the pooled C to a mineral-soil depth of 30 cm could be lost during a fire considered detrimental to soil productivity. These estimates will vary with local climatic regimes, fire severity across the burned area, the size and decay class of WR, and the distribution of OM in the surface organic and mineral soil. Estimated N losses due to fire were much lower (<1%–19%). Further studies on the amounts and distribution of OM in these stands are needed to assess wildfire risk, determine the impacts of different fire severities on WR and soil OM pools, and develop a link between C and N losses and stand productivity.



2010 ◽  
Vol 19 (5) ◽  
pp. 613 ◽  
Author(s):  
Jeff A. Hatten ◽  
Darlene Zabowski

This study investigated the changes in soil organic matter composition by controlling fire severity of laboratory burns on reconstructed surface soil profiles (O, A1 (0–1 cm), and A2 (1–2 cm)). Laboratory burning simulated prescribed burns that would be typical in the understorey of a ponderosa pine forest at low, moderate, and high–moderate severity levels. Soils were analysed for C, N and soil organic matter composition. Soil organic matter was fractionated into humin, humic acid, fulvic acid, soluble non‐humic materials and other hydrophobic compounds. In the O horizon, low‐, moderate‐, and high‐severity treatments consumed an increasing proportion of C and N. Carbon content of the mineral soil was unaffected by burning; however, N content of the A2 horizon decreased after the moderate‐ and high‐severity treatments, likely as a result of N volatilisation. The proportion of non‐soluble material in the O horizon increased with fire severity, whereas the proportion of humin C as total C of the A horizon decreased with fire severity. The decrease in humin was followed by an increase in the other hydrophobic compounds. The higher fire intensity experienced by the burning O horizon created recalcitrant materials while an increase in labile soil organic matter was observed in mineral soil. An increase in labile soil organic matter may cause elevated C and N mineralisation rates often seen after fire.



2016 ◽  
Vol 46 (12) ◽  
pp. 1459-1473 ◽  
Author(s):  
Line Tau Strand ◽  
Ingeborg Callesen ◽  
Lise Dalsgaard ◽  
Heleen A. de Wit

Relationships between soil C and N stocks and soil formation, climate, and vegetation were investigated in a gridded database connected to the National Forest Inventory in Norway. For mineral soil orders, C and N stocks were estimated to be 11.1–19.3 kg C·m−2 and 0.41–0.78 kg N·m−2, respectively, declining in the following order: Gleysols > Podzols > Brunisols > Regosols. Organic peat-type soils stored, on average, 31.3 kg C·m−2 and 1.10 kg N·m−2, whereas shallow Organic folisols stored, on average, 10.2 kg C·m−2 and 0.34 kg N·m−2. For Norway’s 120 000 km2 of forest, the total of soil C stocks was estimated to be 1.83 Gt C, with a 95% CI of 1.71–1.95 Gt C. Podzolic soils comprise the largest soil group and store approximately 50% of the forest soil C. Sixty percent of the soil C stock in Podzolic soils was stored in the mineral soil, increasing with temperature and precipitation. Poorly drained soil types store approximately 47% of the total forest soil C in Norway. Soils with water saturation have large C stocks mainly in the forest floor, suggesting that they are more susceptible to forest management and environmental change. Soil C stocks under pine and spruce forests were similar, although pine forests had larger C stocks in the forest floor, while spruce forests had the highest C stocks in the mineral soil compartment. C stocks in the forest floor increase from dry to moist ground vegetation, while ground vegetation nutrient classes reflect better the C and N stocks in the mineral soil.



1998 ◽  
Vol 78 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Mark Johnston ◽  
Julie Elliott

The Boreal Mixedwood Ecosystem Study near Thunder Bay, Ontario is a multi-disciplinary investigation of the impacts of harvesting and fire on the structure and function of a boreal mixed-wood ecosystem. The fire component comprises a set of treatments in which fire severity was manipulated by adjusting fuel loadings through a variety of harvesting techniques, and also included fire in standing timber. Intensive fuel sampling before and after the fire enabled detailed determinations of fuel consumption, heat output and forest floor reduction. Nutrient concentrations in ash, soil, and plant tissue following the fire were compared with fire severity in order to quantify potential nutrient inputs and their relationship to the amount of biomass consumed during the fire. Forest floor and woody fuel consumption varied significantly among treatments, with the most important factor being whether or not the stand had been harvested previous to the fire. The pH was highest and P concentrations among the lowest in the ash of unharvested blocks. Nutrient concentrations of the remaining forest floor and upper mineral soil were weakly related to the treatments. Forest floor P concentrations were highest on whole-tree harvested and lowest on uncut blocks. Whole-tree harvested blocks also had the highest pH values in forest floor and mineral soil. Concentrations of N, P, and Mg in the foliage of Populus tremuloides Michx. and Rubus idaeus L. were higher on unharvested burned than cut and burned plots, and were negatively correlated with the depth of forest floor reduction. These results indicate that fire severity plays a role in determining the extent of nutrient enrichment following fire, and may be important in influencing long-term site productivity. Key words: Fire severity, forest fire, nutrient cycles, soil chemistry, fire ecology



Forests ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 493
Author(s):  
Emma Georgia Thompson ◽  
Thomas Adam Coates ◽  
Wallace Michael Aust ◽  
Melissa A. Thomas-Van Gundy

Short- and long-term impacts of wildland fires on forest floor properties and erosion potential were examined at three locations in the Central Appalachian region, U.S.A. In 2018, two wildfires were investigated within six months of burning on the George Washington–Jefferson National Forest (GWJNF) in Bland County, Virginia and the Monongahela National Forest (MNF) in Grant County, West Virginia. An additional wildfire was studied eight years post-fire on the Fishburn Forest (FF) in Montgomery County, Virginia. A 2018 prescribed fire was also studied within six months of burning on the MNF in Pendleton County, West Virginia. Litter and duff consumption were examined to evaluate fire severity and char heights were measured to better understand fire intensity. The Universal Soil Loss Equation for forestlands (USLE-Forest) was utilized to estimate potential erosion values. For the 2018 comparisons, litter depth was least as a result of the wildfires on both the MNF and GWJNF (p < 0.001). Wildfire burned duff depths in 2018 did not differ from unburned duff depths on either the MNF or GWJNF. Eight years after the FF wildfire, post-fire litter depth was less than that of an adjacent non-burned forest (p = 0.29) and duff depth was greater than that of an adjacent non-burned forest (p = 0.76). Mean GWJNF wildfire char heights were greatest of all disturbance regimes at 10.0 m, indicating high fire intensity, followed by the MNF wildfire and then the MNF prescribed fire. USLE-Forest potential erosion estimates were greatest on the MNF wildfire at 21.6 Mg soil ha−1 year−1 due to slope steepness. The next largest USLE-Forest value was 6.9 Mg soil ha−1 year−1 on the GWJNF wildfire. Both the prescribed fire and the 2010 wildfire USLE-Forest values were approximately 0.00 Mg soil ha−1 year−1. Implications for potential long-term soil erosion resulting from similar wildfires in Central Appalachian forests appeared to be minimal given the 2010 wildfire results.



1992 ◽  
Vol 2 (3) ◽  
pp. 139 ◽  
Author(s):  
RA Hartford ◽  
WH Frandsen

Fire effects on aplant community, soil, and air are not apparent when judged only by surface fire intensity. The fire severity or fire impact can be described by the temperatures reached within the forest floor and the duration of heating experienced in the vegetation, forest floor, and underlying mineral soil. Temporal distributions of temperatures illustrate heat flow in duff and mineral soil in three instrumented plots: two with slash fuel over moist duff and one with litter fuel over dry duff. Fires in the two slash fuel plots produced substantial flame lengths but minimal heating in the underlying mineral soil. In contrast, smoldering combustion in the dry duff plot produced long duration heating with nearly complete duff consumption and lethal temperatures at the mineral soil surface. Moisture content of duff and soil were key variables for determining f i e impact on the forest floor.



1988 ◽  
Vol 18 (11) ◽  
pp. 1386-1391 ◽  
Author(s):  
Mark B. David ◽  
David F. Grigal ◽  
Lewis F. Ohmann ◽  
George Z. Gertner

Relationships among forest soil carbon, nitrogen, and sulfur, vegetation type, and atmospheric deposition of wet sulfate were tested using 169 forested plots across Minnesota, Wisconsin, and Michigan. Plots were geographically stratified into five zones, with wet sulfate deposition increasing from 156 (zone 1) to 380 (zone 5) equiv.•ha−1 • year−1. Total S concentrations, adjusted for N levels, indicated higher concentrations in eastern than in western zones in both the upper mineral soil (ca. 0.0152 and 0.0133% S, respectively) and forest floor (ca. 0.124 and 0.113% S, respectively). This illustrates that forest soil S levels reflect geographic gradients in atmospheric sulfate deposition. Total C and N concentrations and C:N and C:S ratios were affected by vegetation type. Jack pine and red pine mineral soil had lower concentrations of C and N compared with balsam fir, maple, and aspen. Forest floor C and N showed no clear pattern.



2017 ◽  
Vol 26 (4) ◽  
pp. 296 ◽  
Author(s):  
Randall K. Kolka ◽  
Brian R. Sturtevant ◽  
Jessica R. Miesel ◽  
Aditya Singh ◽  
Peter T. Wolter ◽  
...  

Forest fires cause large emissions of C (carbon), N (nitrogen) and Hg (mercury) to the atmosphere and thus have important implications for global warming (e.g. via CO2 and N2O emissions), anthropogenic fertilisation of natural ecosystems (e.g. via N deposition), and bioaccumulation of harmful metals in aquatic and terrestrial systems (e.g. via Hg deposition). Research indicates that fires are becoming more severe over much of North America, thus increasing element emissions during fire. However, there has been little research relating forest floor and mineral soil losses of C, N and Hg to on-the-ground indices of fire severity that enable scaling up those losses for larger-scale accounting of fire-level emissions. We investigated the relationships between forest floor and mineral soil elemental pools across a range of soil-level fire severities following the 2011 Pagami Creek wildfire in northern Minnesota, USA. We were able to statistically differentiate losses of forest floor C, N and Hg among a five-class soil-level fire severity classification system. Regression relationships using soil fire severity class were able to predict remaining forest floor C, N and Hg pools with 82–96% confidence. We correlated National Aeronautics and Space Administration Airborne Visible and Infrared Imaging Spectrometer-Classic imagery to ground-based plot-scale estimates of soil fire severity to upscale emissions of C, N and Hg to the fire level. We estimate that 468 000 Mg C, 11 000 Mg of N and over 122 g of Hg were emitted from the forest floor during the burning of the 28 310 ha upland area of the Pagami Creek fire.



Sign in / Sign up

Export Citation Format

Share Document