scholarly journals Structural control on fluid flow and shallow diagenesis: Insights from calcite cementation along deformation bands in porous sandstones

2020 ◽  
Author(s):  
Leonardo Del Sole ◽  
Marco Antonellini ◽  
Roger Soliva ◽  
Gregory Ballas ◽  
Fabrizio Balsamo ◽  
...  

Abstract. Porous sandstones are important reservoirs for geofluids. Interaction therein between deformation and cementation during diagenesis is critical since both processes can strongly reduce rock porosity and permeability, deteriorating reservoir quality. Deformation bands (DBs) and structural-related diagenetic bodies, here named Structural and Diagenetic Heterogeneities (SDH), have been recognized to negatively affect fluid flow at a range of scales and potentially lead to reservoir compartmentalization, influencing flow buffering and sealing during production. The hydraulic behavior of DBs is not yet fully constrained, and it remains poorly understood also how diagenetic processes interact with DBs to steer fluid flow mechanisms and evolution. In this contribution we present two field-based studies from Loiano (Northern Apennines, Italy) and Bollène (Provence, France) that contribute to elucidating the structural control exerted by DBs on fluid flow and diagenesis recorded by calcite nodules associated with the bands. We relied on careful field observations and a variety of multiscalar mapping techniques (photography, string mapping, and drone aerial photography), integrated with optical, scanning electron and cathodoluminescence microscopy, and stable isotope (δ13C and δ18O) analysis of nodules cement. In both case studies, at least one set of DBs precedes and controls selective cement precipitation. Cement texture and cathodoluminescence patterns, and their invariably negative δ13C and δ18O value ranges, suggest a meteoric environment for nodule formation. In Loiano, DBs acted as low-permeability barriers to fluid flow and promoted selective cement precipitation. In Bollène, clusters of DBs restricted fluid flow and focused diagenesis in parallel-to-band compartments. Our work shows how low-permeability DBs in porous sandstones can actually affect fluid flow and localize diagenetic processes (in the shallow crust) that, in turn, could further enhance the sealing capacity of these structural features.

Solid Earth ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 2169-2195
Author(s):  
Leonardo Del Sole ◽  
Marco Antonellini ◽  
Roger Soliva ◽  
Gregory Ballas ◽  
Fabrizio Balsamo ◽  
...  

Abstract. Porous sandstones are important reservoirs for geofluids. Interaction therein between deformation and cementation during diagenesis is critical since both processes can strongly reduce rock porosity and permeability, deteriorating reservoir quality. Deformation bands and fault-related diagenetic bodies, here called “structural and diagenetic heterogeneities”, affect fluid flow at a range of scales and potentially lead to reservoir compartmentalization, influencing flow buffering and sealing during the production of geofluids. We present two field-based studies from Loiano (northern Apennines, Italy) and Bollène (Provence, France) that elucidate the structural control exerted by deformation bands on fluid flow and diagenesis recorded by calcite nodules associated with the bands. We relied on careful in situ observations through geo-photography, string mapping, and unmanned aerial vehicle (UAV) photography integrated with optical, scanning electron and cathodoluminescence microscopy, and stable isotope (δ13C and δ18O) analysis of nodules cement. In both case studies, one or more sets of deformation bands precede and control selective cement precipitation. Cement texture, cathodoluminescence patterns, and their isotopic composition suggest precipitation from meteoric fluids. In Loiano, deformation bands acted as low-permeability baffles to fluid flow and promoted selective cement precipitation. In Bollène, clusters of deformation bands restricted fluid flow and focused diagenesis to parallel-to-band compartments. Our work shows that deformation bands control flow patterns within a porous sandstone reservoir and this, in turn, affects how diagenetic heterogeneities are distributed within the porous rocks. This information is invaluable to assess the uncertainties in reservoir petrophysical properties, especially where structural and diagenetic heterogeneities are below seismic resolution.


2012 ◽  
Vol 35 (12) ◽  
pp. 1061-1069 ◽  
Author(s):  
Yi-Zhou Huang ◽  
Jia-Qin Cai ◽  
Jing Xue ◽  
Xiao-He Chen ◽  
Chao-Liang Zhang ◽  
...  

Demineralized bone matrix (DBM) has extensive clinical use for bone regeneration because of its osteoinductive and osteoconductive aptitude. It is suggested that the demineralization process in bone matrix preparation is influential in maintaining osteoinductivity; however, relevant investigations, especially into the osteoinductivity of acellular bone matrix, are not often performed. This study addressed the osteoinductive capability of human acellular cancellous bone matrix (ACBM) after subcutaneous implantation in a rat model. The growth and osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs) seeded in this material were also studied. Without the demineralization process, the ACBM we obtained had an interconnected porous network and the micropores in the surface were clearly exposed. After the ACBM was subcutaneously implanted for 4 months, new osteoid formation was noted but not typical mature bone formation. rBM-MSCs grew well in the ACBM and kept a steady morphology after continuous culture for 28 days. However, no mineralized nodule formation was detected and the expression levels of genes encoding osteogenic markers were significantly decreased. These results demonstrated that human ACBM possess the structural features of native bone and poor osteoinductivity; nonetheless this material helped to preserve the undifferentiated phenotype of rBM-MSCs. Such insights may further broaden our understanding of the application of ACBM for bone regeneration and the creation of stem cell niches.


2013 ◽  
Vol 295-298 ◽  
pp. 3162-3165
Author(s):  
Lu Lu Zhou ◽  
Zi Nan Li ◽  
Jun Gang Liu ◽  
Yan Yun Zhang ◽  
Guang Qiang Shu

Taking the example of the fourth member of the Lower Cretaceous Quantou formation reservoirs in fault block Sheng554 of Sanzhao sag, this article discusses the methodology of flow units in extra-low permeability reservoirs. The research on flow units in such reservoirs can be divided into two ranks, one is to determine the distribution of seepage barriers and inner connected sands, the other is to analyze the differentia of fluid flow in the inner connected sands so as to subdivide the flow units. The result shows that the pelitic barriers are rather developed in fault block Sheng554. Through the analysis of differentia of fluid flow, according to the value of flow zone index (FZI), the inner connected sands can be classified into three types of flow units, among which type A with FZI value greater than 1.0 has better permeable property and higher intensity of water injection, and the ability of permeability and water injection of type B with FZI value between 0.5 and 1.0 takes the second place, and type C is the worst flow unit with the worst permeable property and intensity of water injection with FZI value less than 0.5. Among the three types of flow units, type A poorly develops, while type B and type C develops well. The research on flow units can provide reliable geologic bases for forecasting the distribution of remaining oil in extra-low permeability reservoirs and for developing remaining oil in the study area.


1979 ◽  
Vol 19 (1) ◽  
pp. 43
Author(s):  
R. J. Paten ◽  
L. N. Brown ◽  
R. D. Groves

The Denison Trough in east central Queensland contains up to 4600m of both marine and non-marine, Permian and Triassic rocks. The sequence comprises thick mature source rocks interlayered and interfingering with thick sandstone intervals. Good to excellent sandstone reservoirs occur, though their distribution and development is sporadic and controlled by both despositional and diagenetic processes. This is the main limitation to the potential of the area. Source rocks appear to be gas or gas/condensate prone, although liquids generation cannot be discounted.Exploration to date, comprising extensive seismic and the drilling of 39 exploration and 29 assessment wells, has led to the discovery of four small gas fields with combined reserves of approximately 850-1140m3 x 106. These reserves are insufficient to justify exploitation at this time. Apart from the fields, numerous gas shows and minor oil shows have been recorded throughout the Permian sequence, establishing beyond doubt that the trough is a hydrocarbon province.The trough is assessed as having a high potential for the discovery of additional gas reserves, with a possible 15-55m3 x 109 being present both in deep structural plays and in shallower, essentially stratigraphic, plays. Further successful exploration will require both good quality structural control, particularly at depth and a sound understanding of the depositional processes controlling the development of reservoir sands. Since active exploration effectively ceased in the area in 1970, a great deal of stratigraphic information has become available. This has led to a better understanding of the stratigraphy than was previously possible. In addition, advances in seismic technology over the last decade have made available much more reliable exploration tools, with respect to achieving good quality, deep structural control and to stratigraphic interpretation and reservoir trend prediction.The Denison Trough is considered to be one of the most prospective of Australia's onshore basins. It remains to be seen; however, if the application of present stratigraphic/depositional knowledge and new seismic technology will result in its potential being realised.


Sign in / Sign up

Export Citation Format

Share Document