scholarly journals Unexpected Terrain Induced Changes in Cortical Activity in Bipedal-Walking Rats

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 36
Author(s):  
Honghao Liu ◽  
Bo Li ◽  
Minjian Zhang ◽  
Chuankai Dai ◽  
Pengcheng Xi ◽  
...  

Humans and other animals can quickly respond to unexpected terrains during walking, but little is known about the cortical dynamics in this process. To study the impact of unexpected terrains on brain activity, we allowed rats with blocked vision to walk on a treadmill in a bipedal posture and then walk on an uneven area at a random position on the treadmill belt. Whole brain EEG signals and hind limb kinematics of bipedal-walking rats were recorded. After encountering unexpected terrain, the θ band power of the bilateral M1, the γ band power of the left S1, and the θ to γ band power of the RSP significantly decreased compared with normal walking. Furthermore, when the rats left uneven terrain, the β band power of the bilateral M1 and the α band power of the right M1 decreased, while the γ band power of the left M1 significantly increased compared with normal walking. Compared with the flat terrain, the θ to low β (3–20 Hz) band power of the bilateral S1 increased after the rats contacted the uneven terrain and then decreased in the single- or double- support phase. These results support the hypothesis that unexpected terrains induced changes in cortical activity.

2015 ◽  
Vol 29 (4) ◽  
pp. 135-146 ◽  
Author(s):  
Miroslaw Wyczesany ◽  
Szczepan J. Grzybowski ◽  
Jan Kaiser

Abstract. In the study, the neural basis of emotional reactivity was investigated. Reactivity was operationalized as the impact of emotional pictures on the self-reported ongoing affective state. It was used to divide the subjects into high- and low-responders groups. Independent sources of brain activity were identified, localized with the DIPFIT method, and clustered across subjects to analyse the visual evoked potentials to affective pictures. Four of the identified clusters revealed effects of reactivity. The earliest two started about 120 ms from the stimulus onset and were located in the occipital lobe and the right temporoparietal junction. Another two with a latency of 200 ms were found in the orbitofrontal and the right dorsolateral cortices. Additionally, differences in pre-stimulus alpha level over the visual cortex were observed between the groups. The attentional modulation of perceptual processes is proposed as an early source of emotional reactivity, which forms an automatic mechanism of affective control. The role of top-down processes in affective appraisal and, finally, the experience of ongoing emotional states is also discussed.


Author(s):  
Yeoun-Jae Kim ◽  
Joon-Yong Lee ◽  
Ju-Jang Lee

Purpose – This paper aims to present a step-exchange strategy for balance control of a walking biped robot when a lateral impact acts suddenly. A step-out strategy has been recently proposed for balance control when an unknown lateral force acts to a biped robot during walking. This step-out strategy causes a robot to absorb the impact kinetic energy and efficiently maintain balance without falling down. Nevertheless, it was found that the previous strategies have drawbacks that the two foots should always be on the ground (double-support mode) after being balanced and the authors think it is difficult to continue walking after being balanced. Unlike the existing balance strategies, the proposed step-exchange strategy is to not only maintain balance but also to lift one leg in the air (single-support mode) after being balanced so that it is easy for a biped robot to keep walking after being balanced. Design/methodology/approach – In the proposed step-exchange strategy, forward Newton–Euler equation, angular momentum and energy conservation equation were derived. Hill-climbing algorithm is utilized for numerically finding a solution. To verify the proposed strategy, a biped robot by Open Dynamics Engine was stimulated, and experiments with a real biped robot (LRH-1) were also conducted. Findings – The proposed step-exchange strategy enables a walking biped robot under a lateral impact to keep balance and to keep a single-support mode after exchanging a leg. It is helpful for a biped robot to continue walking without any stop. It is found that the proposed step-exchange strategy can be applicable for maintaining balance even if a biped robot is moving. Even though this proposal seems immature yet, it is the first attempt to exchange the supporting foot itself. This strategy is very straightforward and intuitive because humans are also likely to exchange their supporting foot onto the opposite side when an unexpected force is acting. Research limitations/implications – The proposed step-exchange strategy described in this paper can be applicable in the situation when the external force is applied in the +Y direction, the left leg is the swing leg and the right leg is the stance leg, or it can also be applicable in the situation when the external force is applied in −Y direction, the right leg is the swing leg and the left leg is the stance leg (Figure 2 for ±Y force direction). If an impact force acts to the side of the swing leg, the other step-exchange strategy is needed. The authors are studying this issue as a future work. Originality/value – The authors have originated the proposed step-exchange strategy for balance control of a walking biped robot under lateral impact. The strategy is genuine and superior in comparison with the state-of-the-art strategy because not only can a biped robot be balanced but it can also easily continue walking by using the step-exchange strategy.


2020 ◽  
Vol 10 (2) ◽  
pp. 90 ◽  
Author(s):  
Arnaud Delval ◽  
Madli Bayot ◽  
Luc Defebvre ◽  
Kathy Dujardin

Gait is often considered as an automatic movement but cortical control seems necessary to adapt gait pattern with environmental constraints. In order to study cortical activity during real locomotion, electroencephalography (EEG) appears to be particularly appropriate. It is now possible to record changes in cortical neural synchronization/desynchronization during gait. Studying gait initiation is also of particular interest because it implies motor and cognitive cortical control to adequately perform a step. Time-frequency analysis enables to study induced changes in EEG activity in different frequency bands. Such analysis reflects cortical activity implied in stabilized gait control but also in more challenging tasks (obstacle crossing, changes in speed, dual tasks…). These spectral patterns are directly influenced by the walking context but, when analyzing gait with a more demanding attentional task, cortical areas other than the sensorimotor cortex (prefrontal, posterior parietal cortex, etc.) seem specifically implied. While the muscular activity of legs and cortical activity are coupled, the precise role of the motor cortex to control the level of muscular contraction according to the gait task remains debated. The decoding of this brain activity is a necessary step to build valid brain–computer interfaces able to generate gait artificially.


2018 ◽  
Vol 1 (1) ◽  
pp. 36-46
Author(s):  
Patrick S Ledwidge

Sports-related Concussions (SRC) and their potential long-term effects are a growing concern among athletes and their families. Research utilizing functional brain imaging/recording techniques (e.g., fMRI, ERP) seeks to explain how neurocognitive brain activity changes in the days and years following SRC. Although language deficits are documented following non-sports related concussion there remains a striking lack of research on how SRCs may influence the language system and their supporting neural mechanisms. Neuroimaging findings, however, demonstrate that SRCs alter structural and functional pathways within the frontotemporal language network. Brain regions included in this network generate language-related event-related brain potentials (ERPs), including the N400 and P600. ERPs have been used to demonstrate long-term neurocognitive alterations associated with concussion and may also provide objective and robust markers of SRC-induced changes to the language system.


2012 ◽  
Vol 30 (5) ◽  
pp. 463-479 ◽  
Author(s):  
Assal Habibi ◽  
Vinthia Wirantana ◽  
Arnold Starr

This study investigates the effects of music training on brain activity to violations of melodic expectancies. We recorded behavioral and event-related brain potential (ERP) responses of musicians and nonmusicians to discrepancies of pitch between pairs of unfamiliar melodies based on Western classical rules. Musicians detected pitch deviations significantly better than nonmusicians. In musicians compared to nonmusicians, auditory cortical potentials to notes but not unrelated warning tones exhibited enhanced P200 amplitude generally, and in response to pitch deviations enhanced amplitude for N150 and P300 (P3a) but not N100 was observed. P3a latency was shorter in musicians compared to nonmusicians. Both the behavioral and cortical activity differences observed between musicians and nonmusicians in response to deviant notes were significant with stimulation of the right but not the left ear, suggesting that left-sided brain activity differentiated musicians from nonmusicians. The enhanced amplitude of N150 among musicians with right ear stimulation was positively correlated with earlier age onset of music training. Our data support the notion that long-term music training in musicians leads to functional reorganization of auditory brain systems, and that these effects are potentiated by early age onset of training.


Author(s):  
Sarah A. Luse

In the mid-nineteenth century Virchow revolutionized pathology by introduction of the concept of “cellular pathology”. Today, a century later, this term has increasing significance in health and disease. We now are in the beginning of a new era in pathology, one which might well be termed “organelle pathology” or “subcellular pathology”. The impact of lysosomal diseases on clinical medicine exemplifies this role of pathology of organelles in elucidation of disease today.Another aspect of cell organelles of prime importance is their pathologic alteration by drugs, toxins, hormones and malnutrition. The sensitivity of cell organelles to minute alterations in their environment offers an accurate evaluation of the site of action of drugs in the study of both function and toxicity. Examples of mitochondrial lesions include the effect of DDD on the adrenal cortex, riboflavin deficiency on liver cells, elevated blood ammonia on the neuron and some 8-aminoquinolines on myocardium.


1989 ◽  
Vol 62 (04) ◽  
pp. 1057-1061 ◽  
Author(s):  
Marcus E Carr ◽  
Patrick L Powers

SummaryThis study was performed to quantitate the impact of several glycosaminoglycans (GAG) on fibrin assembly and structure. Gel formation was monitored as the increase in optical density at 633 nm subsequent to thrombin (2 NIH u/ml) or atroxin (0.10 mg/ml) addition to solutions of buffered fibrinogen (1 mg/ml) or plasma. Gel absorbance was measured as a function of wavelength (400 to 800 nm) and gel fiber diameter and mass/length ratio (μ) were calculated. Chondroitin sulfate A (CSA)shortened the lag phase, enhanced the maximal rate of turbidity increase, and increased the final gel turbidity of fibrin gels formed by thrombin or atroxin. CSA (16 mg/ml) increased fiber μ from 1.3 to 3.1 × 1013 dalton/cm and fiber radius from 6.0 to 8.6 × 10-6 cm in thrombin-induced gels. μ increased from 0.7 to 2.7 × 1013 dalton/cm and fiber radius from 4 to 7.8 × 10-6 cm for atroxin-induced gels. Above 16 mg/ml, CSA caused fibrinogen precipitation in purified solutions but not in plasma. CSA inhibited thrombin-induced plasma clotting of plasma but effects in atroxin-mediated plasma gels paralleled those seen in purified solutions. Chondroitin sulfate B (CSB)-induced changes in fibrin were similar but slightly less dramatic than those seen with CSA. μ increased from 0.9 to 2.0 × 1013 dalton/cm for thrombin-induced fibrin gels and from 0.8 to 2.3 × 1013 dalton/cm for atroxininduced gels. Low molecular weight heparin (Mr = 5100) slowed fibrin assembly and reduced fiber size by 50% in thrombininduced gels. Changes in μ of atroxin-induced gels were much less pronounced (<20%). This study documents pronounced GAGinduced changes in fibrin structure which vary with GAG species and may mediate significant physiologic functions.


2019 ◽  
Vol 10 (12) ◽  
pp. 1183-1199
Author(s):  
Mohammed Alrouili ◽  

This study attempted to identify the impact of internal work environment on the retention of healthcare providers at Turaif General Hospital in the Kingdom of Saudi Arabia. In particular, the study aimed to identify the dimensions of work circumstances, compensation, and relationship with colleagues, professional growth, and the level of healthcare providers’ retention. In order to achieve the study goals, the researcher used the descriptive analytical approach. The researcher used the questionnaire as the study tool. The study population comprised all the healthcare providers at Turaif General Hospital. Questionnaires were distributed to the entire study sample that consisted of 220 individuals. The number of questionnaires valid for study was 183 questionnaires. The research findings were as follows: the participants’ estimate of the work circumstances dimension was high (3.64), the participants’ estimate of the compensation dimension was moderate (3.32), the participants’ estimate of the relationship with colleagues dimension was high (3.62), the participants’ estimate of the professional growth dimension was weak (2.39), and the participants’ estimate of healthcare providers’ retention level was intermediate (2.75). Accordingly, the researcher’s major recommendations are: the need to create the right atmosphere for personnel in hospitals, the interest of the hospital to provide the appropriate conditions for the staff in terms of the physical and moral aspects for building the work adjustment in the staff, and conducting training courses and educational lectures for personnel in hospitals on how to cope with the work pressures.


2017 ◽  
Vol 30 (1) ◽  
pp. 112-121
Author(s):  
Shamier Ebrahim

The right to adequate housing is a constitutional imperative which is contained in section 26 of the Constitution. The state is tasked with the progressive realisation of this right. The allocation of housing has been plagued with challenges which impact negatively on the allocation process. This note analyses Ekurhuleni Metropolitan Municipality v Various Occupiers, Eden Park Extension 51 which dealt with a situation where one of the main reasons provided by the Supreme Court of Appeal for refusing the eviction order was because the appellants subjected the unlawful occupiers to defective waiting lists and failed to engage with the community regarding the compilation of the lists and the criteria used to identify beneficiaries. This case brings to the fore the importance of a coherent (reasonable) waiting list in eviction proceedings. This note further analyses the impact of the waiting list system in eviction proceedings and makes recommendations regarding what would constitute a coherent (reasonable) waiting list for the purpose of section 26(2) of the Constitution.


Sign in / Sign up

Export Citation Format

Share Document