cerebellum development
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 9)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mari Sepp ◽  
Kevin Leiss ◽  
Ioannis Sarropoulos ◽  
Florent Murat ◽  
Konstantin Okonechnikov ◽  
...  

The expansion of the neocortex, one of the hallmarks of mammalian evolution, was accompanied by an increase in the number of cerebellar neurons. However, little is known about the evolution of the cellular programs underlying cerebellum development in mammals. In this study, we generated single-nucleus RNA-sequencing data for ~400,000 cells to trace the development of the cerebellum from early neurogenesis to adulthood in human, mouse, and the marsupial opossum. Our cross-species analyses revealed that the cellular composition and differentiation dynamics throughout cerebellum development are largely conserved, except for human Purkinje cells. Global transcriptome profiles, conserved cell state markers, and gene expression trajectories across neuronal differentiation show that the cerebellar cell type-defining programs have been overall preserved for at least 160 million years. However, we also discovered differences. We identified 3,586 genes that either gained or lost expression in cerebellar cells in one of the species, and 541 genes that evolved new expression trajectories during neuronal differentiation. The potential functional relevance of these cross-species differences is highlighted by the diverged expression patterns of several human disease-associated genes. Altogether, our study reveals shared and lineage-specific programs governing the cellular development of the mammalian cerebellum, and expands our understanding of the evolution of mammalian organ development.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yanling Li ◽  
Huiyuan Liu ◽  
Keng Chen ◽  
Xueheng Wu ◽  
Jiawen Wu ◽  
...  

Background and Aim: Hepatic encephalopathy (HE) is a neurological disease caused by severe liver disease. Early identification of the risk factor is beneficial to the prevention and treatment of HE. Free bilirubin has always been considered to be the culprit of neonatal kernicterus, but there is no research to explore its role in HE. In this study, we aim to study the clinical significance of the indirect bilirubin-albumin ratio in HE.Methods: A retrospective case-control study of 204 patients with liver failure was conducted. Human serum albumin (HSA) or heme oxygenase-1 (HO-1) inhibitor SnPP (Tin protoporphyrin IX dichloride) was injected intraperitoneally into Ugt1−/− mice to establish a treatment model for endogenous hyperbilirubinemia.Results: IBil/albumin ratio (OR = 1.626, 95% CI1.323–2.000, P < 0.001), white blood cell (WBC) (OR = 1.128, 95% CI 1.009–1.262, P = 0.035), ammonia (OR = 1.010, 95% CI 1.001–1.019, P = 0.027), platelet (OR=1.008, 95% CI 1.001–1.016, P = 0.022), Hb (OR = 0.977, 95% CI 0.961–0.994, P = 0.007), and PTA (OR = 0.960, 95% CI 0.933–0.987, P = 0.005) were independent factors of HE. Patients with a history of liver cirrhosis and severe HE (OR = 12.323, 95% CI 3.278–47.076, P < 0.001) were more likely to die during hospitalization. HSA or SnPP treatment improved cerebellum development and reduced apoptosis of cerebellum cells.Conclusion: The IBil/albumin ratio constitutes the most powerful risk factor in the occurrence of HE, and reducing free bilirubin may be a new strategy for HE treatment.


2020 ◽  
Vol 32 (8) ◽  
pp. 3207-3212
Author(s):  
Ruike Liu ◽  
Li Li ◽  
Xueqian Du ◽  
Ying Wang ◽  
Shuai Chen ◽  
...  

Development ◽  
2020 ◽  
Vol 147 (21) ◽  
pp. dev188078 ◽  
Author(s):  
Pengcheng Ma ◽  
Tao An ◽  
Liang Zhu ◽  
Longlong Zhang ◽  
Huishan Wang ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 997
Author(s):  
Juncal Aldaregia ◽  
Peio Errarte ◽  
Ane Olazagoitia-Garmendia ◽  
Marian Gimeno ◽  
Jose Javier Uriz ◽  
...  

Medulloblastoma is the most common and malignant pediatric brain tumor in childhood. It originates from dysregulation of cerebellar development, due to an excessive proliferation of cerebellar granule neuron precursor cells (CGNPs). The underlying molecular mechanisms, except for the role of SHH and WNT pathways, remain largely unknown. ERBB4 is a tyrosine kinase receptor whose activity in cancer is tissue dependent. In this study, we characterized the role of ERBB4 during cerebellum development and medulloblastoma progression paying particular interests to its role in CGNPs and medulloblastoma stem cells (MBSCs). Our results show that ERBB4 is expressed in the CGNPs during cerebellum development where it plays a critical role in migration, apoptosis and differentiation. Similarly, it is enriched in the population of MBSCs, where also controls those critical processes, as well as self-renewal and tumor initiation for medulloblastoma progression. These results are translated to clinical samples where high levels of ERBB4 correlate with poor outcome in Group 4 and all medulloblastomas groups. Transcriptomic analysis identified critical processes and pathways altered in cells with knock-down of ERBB4. These results highlight the impact and underlying mechanisms of ERBB4 in critical processes during cerebellum development and medulloblastoma.


2020 ◽  
Vol 55 (5) ◽  
pp. e4502 ◽  
Author(s):  
Raluca Ica ◽  
Alina Petrut ◽  
Cristian V.A. Munteanu ◽  
Mirela Sarbu ◽  
Željka Vukelić ◽  
...  

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
N Sumru Bayin ◽  
Alexandre Wojcinski ◽  
Aurelien Mourton ◽  
Hiromitsu Saito ◽  
Noboru Suzuki ◽  
...  

Outside of the neurogenic niches of the brain, postmitotic neurons have not been found to undergo efficient regeneration. We demonstrate that mouse Purkinje cells (PCs), which are born at midgestation and are crucial for development and function of cerebellar circuits, are rapidly and fully regenerated following their ablation at birth. New PCs are produced from immature FOXP2+ Purkinje cell precursors (iPCs) that are able to enter the cell cycle and support normal cerebellum development. The number of iPCs and their regenerative capacity, however, diminish soon after birth and consequently PCs are poorly replenished when ablated at postnatal day five. Nevertheless, the PC-depleted cerebella reach a normal size by increasing cell size, but scaling of neuron types is disrupted and cerebellar function is impaired. Our findings provide a new paradigm in the field of neuron regeneration by identifying a population of immature neurons that buffers against perinatal brain injury in a stage-dependent process.


Sign in / Sign up

Export Citation Format

Share Document