nicrmov steel
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 2)

Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4276
Author(s):  
Xiaobing Luo ◽  
Chongchen Xiang ◽  
Feng Chai ◽  
Zijian Wang ◽  
Zhengyan Zhang ◽  
...  

Cu-bearing age-hardening steel has significant potential in shipbuilding applications due to its excellent weldability as compared to conventional NiCrMoV steel. Not much research has been carried out to analyze the differences in the mechanisms of strength and toughness between Cu-bearing age-hardening and NiCrMoV steel. Both steels were heat treated under the same conditions: they were austenized at 900 °C and then quenched to room temperature, followed by tempering at 630 °C for 2 h. The uniaxial tensile test reveals that the Cu-bearing age-hardening steel exhibits relatively lower strength but larger plasticity than NiCrMoV steel. The lower contents of Carbon and other alloying elements is one of possible reasons for these differences in mechanical properties. Transmission Electron Microscope observations show that two types of precipitates, Cr carbides and Cu-rich particles, exist in tempered Cu-bearing age-hardening steel. Cu-rich particles with sizes of 20–40 nm can inhibit the dislocation motion during deformation, which then results in dislocation pile ups and multiplication; this makes up the strength loss of Cu-bearing age-hardening steel and simultaneously improves its plasticity.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 811
Author(s):  
Shuo Weng ◽  
Yuhui Huang ◽  
Mingliang Zhu ◽  
Fuzhen Xuan

The degradation of mechanical properties of materials is essentially related to microstructural changes under service loadings, while the inhomogeneous degradation behaviors along welded joints are not well understood. In the present work, microstructural evolution under low-cycle fatigue in base metal (BM) and weld metal (WM) of NiCrMoV steel welded joints were investigated by miniature tensile tests and microstructural observations. Results showed that both the yield strength and ultimate tensile strength of the BM and WM decreased after low-cycle fatigue tests, which were attributed to the reduction of dislocation density and formation of low-energy structures. However, the microstructural evolution mechanisms in BM and WM under the same cyclic loadings were different, i.e., the decrease of dislocation density in BM was attributed to the dislocation pile-ups along the grain boundaries, dislocation tangles around the carbides at the lower strain amplitudes (±0.3% or ±0.5%). Additionally, when the strain amplitude was ±8%, the dislocation density was further decreased by the formation of subgrains in BM. For WM, the dislocation density decreased with the increase of strain amplitude, which was mainly caused by the dislocation pile-ups along the grain boundaries and the formation of subgrains.


2019 ◽  
Vol 181 ◽  
pp. 108072 ◽  
Author(s):  
Shuo Weng ◽  
Yuhui Huang ◽  
Fuzhen Xuan ◽  
Songlin Zheng

Author(s):  
Hongxing Wang ◽  
Zhangzhong Wang ◽  
Yajun Xue ◽  
Cangsheng Wang ◽  
Zhe Lv ◽  
...  

2019 ◽  
Vol 269 ◽  
pp. 03012
Author(s):  
Manjie Fan ◽  
Peng Wang ◽  
Qixing Sun

The influences of prolonged service on microstructure evolution and mechanical properties of NiCrMoV steel welded joint in an ex-service welded steam turbine rotor were investigated. The welded rotor had been operated for 22 years since 1991. The specimens for the present study were taken from the location where the temperature was as high as 230°C. The optical microscope (OM) showed that even after long-term service, there were no obvious defects such as creep cavities, cracks found in the microstructure of the whole welded joint after such a long term service. The microstructure was uniform and no obvious grain coarsening was observed. However some black strip-shaped zones were found in base metal and heat affected zone (HAZ). The distribution of hardness across the welded joints showed no anomalies. The results of tensile strength and fracture toughness tests demonstrated that the welded joint still exhibited excellent. Mechanical performance after long-term service, indicating that the welding process of Shanghai Turbine Plant was reliable and stable. With the improvement of forging and welding qualities and improved heat treatment furnaces with more accurately controlled temperature, it is reasonable to assume that the current large low-pressure (LP) welded rotors are definitely safe to operate under similar service conditions for designed life.


2018 ◽  
Vol 33 (8) ◽  
pp. 923-934 ◽  
Author(s):  
Yifei Li ◽  
Zhipeng Cai ◽  
Kejian Li ◽  
Jiluan Pan ◽  
Xia Liu ◽  
...  

Abstract


Sign in / Sign up

Export Citation Format

Share Document