Effects of Pre-Reduction Degree of Ironsand on Slag Properties in Melting Separation Process

2017 ◽  
Vol 89 (3) ◽  
pp. 1700363 ◽  
Author(s):  
Zhenyang Wang ◽  
Jianliang Zhang ◽  
Kexin Jiao ◽  
Zhengjian Liu
2017 ◽  
Vol 24 (7) ◽  
pp. 691-696
Author(s):  
Yu-bao Liu ◽  
Zhi-hong Zhang ◽  
Er-xiong Zhao ◽  
Xian-heng Zhang ◽  
Xiao-qing Wang ◽  
...  

2014 ◽  
Vol 26 (1) ◽  
pp. 251-253 ◽  
Author(s):  
Chunmei Wei ◽  
Qingcai Liu ◽  
Jinchuan Gu

2020 ◽  
Vol 117 (1) ◽  
pp. 118
Author(s):  
Wentao Guo ◽  
Zhi Wang ◽  
Zengwu Zhao ◽  
Wenfeng Wang

The evolution of mineral phase structure during the reduction and melting separation of an rare earth (RE)-rich iron mineral (RER-IM) is investigated. The results show the iron oxides are reduced to their metallic iron or FeO at 1373 K. When reduction time is 180 min, the reduction degree is 84%. Both bastnaesite (RE(CO3)F) and monazite (REPO4) are transformed into Ca2RE8(SiO4)6O2 during carbothermic reduction at 1373 K. The mineral with a reduction degree of 84% is melt-separated in a graphite crucible at 1773 K for 20 min, the resulting slag contains 20.64% RE2O3, with RE existing in the form of Ca2RE8(SiO4)6O2. Moreover, P from the reduction of Ca3(PO4)2 dissolves in iron with a content ranging from 1.2 to 2.21%. The type of RE phase that occurs in the slag is related to the distribution of P between slag and iron. A low P content in the slag facilitates the formation of Ca2RE8(SiO4)6O2, but a high content in the slag favours Ca3RE2[(Si, P)O4]3F. Thus, it is confirmed that the RE phase structure is controlled by the distribution of P between slag and iron.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4937
Author(s):  
Shaoyan Hu ◽  
Deyong Wang ◽  
Xianglong Li ◽  
Wei Zhao ◽  
Tianpeng Qu ◽  
...  

Concentrating the chromium in chromium slag and improving the chromium–iron ratio is beneficial for the further utilization of chromium slag. In this paper, chromium slag obtained from a chromite lime-free roasting plant was used as the raw material. Pellets made of the chromium slag and pulverized coal were reduced at different pre-reduction temperatures and then separated by a melting separation process or magnetic separation process, respectively. The mass and composition of the metallized pellets before separation, along with the alloy and tail slag after separation, were comprehensively analyzed. The experimental results showed that the output yield of alloy, iron recovery rate, and chromium content in the alloy were all higher when using melting separation than when using magnetic separation, because of the further reduction during the melting stage. More importantly, a relatively low pre-reduction temperature and selection of magnetic separation process were found to be more beneficial for chromium enrichment in slag; the highest chromium–iron ratio in tail slag can reach 2.88.


Author(s):  
V.I. Pakhomov ◽  
◽  
S.V. Braginets ◽  
O.N. Bakhchevnikov ◽  
A.I. Rukhlyada ◽  
...  

Low-traumatic technology of grain separation from an ear is developed. It consists in influence of an air jet on an ear.It leads to rolling of an ear on a surface of the threshing device concave and causes its partial abrasion which is followed by grains separation. Process of wheat ears low-traumatic threshing in the experimental device yields satisfactory results, provides reduces grain endosperm damage on 10-12% in comparison with traditional technology. Germ of grain damage decreases by 5%.Crushing of grain made no more than 0,5%. Use of the developed technology of the low-traumatic threshing will allow to reduce grain damage of cereal crops in case of the harvesting. It is important by cereal breeding.


Sign in / Sign up

Export Citation Format

Share Document