local anodic oxidation
Recently Published Documents


TOTAL DOCUMENTS

120
(FIVE YEARS 15)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Charlotte Ovenden ◽  
Ian Farrer ◽  
Maurice S Skolnick ◽  
Jon Heffernan

Abstract Scanning probe microscopy assisted local anodic oxidation offers advantages over other semiconductor fabrication techniques as it is a low contamination method. We demonstrate the fabrication of deep and highly reproducible nanohole arrays on InP using local anodic oxidation. Nanohole and nano-oxide mound radius and depth are controlled independently by altering atomic force microscope tip bias and humidity, with a maximum nanohole depth of 15.6 ± 1.2 nm being achieved. Additionally, the effect of tip write speed on oxide line formation is compared for n-type, p-type and semi-insulating substrates, which shows that n-type InP oxidises at a slower rate that semi-insulated or p-type InP. Finally, we calculate the activation energy for LAO of semi-insulating InP to be 0.4 eV, suggesting the oxidation mechanism is similar to that which occurs during plasma oxidation.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5716
Author(s):  
Siti Noorhaniah Yusoh ◽  
Khatijah Aisha Yaacob

SiNW (silicon nanowire) arrays consisting of 5- and 10-wires were fabricated by using an atomic force microscope—the local anodic oxidation (AFM-LAO) technique followed by wet chemical etching. Tetramethylammonium hydroxide (TMAH) and isopropyl alcohol (IPA) at various concentrations were used to etch SiNWs. The SiNWs produced were differed in dimension and surface roughness. The SiNWs were functionalized and used for the detection of deoxyribonucleic acid (DNA) dengue (DEN-1). SiNW-based biosensors show sensitive detection of dengue DNA due to certain factors. The physical properties of SiNWs, such as the number of wires, the dimensions of wires, and surface roughness, were found to influence the sensitivity of the biosensor device. The SiNW biosensor device with 10 wires, a larger surface-to-volume ratio, and a rough surface is the most sensitive device, with a 1.93 fM limit of detection (LOD).


2021 ◽  
Author(s):  
Bogdan R Borodin ◽  
Fedor Benimetskiy ◽  
Prokhor A. Alekseev

2020 ◽  
Vol 1697 ◽  
pp. 012096
Author(s):  
B R Borodin ◽  
F A Benimetskiy ◽  
M S Dunaevskiy ◽  
P A Alekseev

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3451
Author(s):  
Vadim Avilov ◽  
Nikita Polupanov ◽  
Roman Tominov ◽  
Maxim Solodovnik ◽  
Boris Konoplev ◽  
...  

The paper presents the results of experimental studies of the influence of the local anodic oxidation control parameters on the geometric parameters of oxide nanoscale structures (ONS) and profiled nanoscale structures (PNS) on the surface of epitaxial structures of silicon doped gallium arsenide with an impurity concentration of 5 × 1017 cm−3. X-ray photoelectron spectroscopy measurements showed that GaAs oxide consists of oxide phases Ga2O3 and As2O3, and the thickness of the Ga2O3 layer is 2–3 times greater than the thickness of As2O3 area—i.e., the oxidized GaAs region consists mainly of Ga2O3. The experimental studies of the influence of ONS thickness on the resistive switching effect were obtained. An increase in the ONS thickness from 0.8 ± 0.3 to 7.6 ± 0.6 nm leads to an increase in the switching voltage Uset from 2.8 ± 0.3 to 6.8 ± 0.9 V. The results can be used in the development of technological processes for the manufacturing of nano-electronic elements, such as ReRAM, as well as a high-efficiency quantum dot laser.


2020 ◽  
Author(s):  
Bogdan R. Borodin ◽  
Fedor A. Benimetskiy ◽  
Alexander N. Smirnov ◽  
Valery Yu. Davydov ◽  
Ilya A. Eliseyev ◽  
...  

2019 ◽  
Vol 1410 ◽  
pp. 012233 ◽  
Author(s):  
R V Tominov ◽  
N A Polupanov ◽  
V I Avilov ◽  
M S Solodovnik ◽  
N V Parshina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document