tbx5 expression
Recently Published Documents


TOTAL DOCUMENTS

10
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 1)

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhentao Zhang ◽  
Wenhui Zhang ◽  
Young-Jae Nam

Abstract Reprogramming of fibroblasts to induced cardiomyocyte-like cells (iCMs) offers potential strategies for new cardiomyocyte generation. However, a major challenge of this approach remains its low efficiency for contractile iCMs. Here, we showed that controlled stoichiometric expression of Gata4 (G), Hand2 (H), Mef2c (M), and Tbx5 (T) significantly enhanced contractile cardiomyocyte reprogramming over previously defined stoichiometric expression of GMT or uncontrolled expression of GHMT. We generated quad-cistronic vectors expressing distinct relative protein levels of GHMT within the context of a previously defined splicing order of M-G-T with high Mef2c level. Transduction of the quad-cistronic vector with a splicing order of M-G-T-H (referred to as M-G-T-H) inducing relatively low Hand2 and high Mef2c protein levels not only increased sarcomeric protein induction, but also markedly promoted the development of contractile structures and functions in fibroblasts. The expressed Gata4 and Tbx5 protein levels by M-G-T-H transduction were relatively higher than those by transductions of other quad-cistronic vectors, but lower than those by previously defined M-G-T tri-cistronic vector transduction. Taken together, our results demonstrate the stoichiometric requirement of GHMT expression for structural and functional progresses of cardiomyocyte reprogramming and provide a new basic tool-set for future studies.


2017 ◽  
Vol 9 (2) ◽  
pp. 212
Author(s):  
C. De Bono ◽  
M. Théveniau-Ruissy ◽  
N. Bertrand ◽  
R. Sturny ◽  
S. Stefanovic ◽  
...  

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Renita C. Polk ◽  
Peter Gergics ◽  
Jeffrey D. Steimle ◽  
Huiqing Li ◽  
Ivan P. Moskowitz ◽  
...  

Development ◽  
2012 ◽  
Vol 139 (17) ◽  
pp. 3180-3188 ◽  
Author(s):  
C. Minguillon ◽  
S. Nishimoto ◽  
S. Wood ◽  
E. Vendrell ◽  
J. J. Gibson-Brown ◽  
...  
Keyword(s):  

2004 ◽  
Vol 18 (2) ◽  
pp. 129-140 ◽  
Author(s):  
Cathy J. Hatcher ◽  
Nata Y.S.-G. Diman ◽  
Min-Su Kim ◽  
David Pennisi ◽  
Yan Song ◽  
...  

Transcriptional regulatory cascades during epicardial and coronary vascular development from proepicardial progenitor cells remain to be defined. We have used immunohistochemistry of human embryonic tissues to demonstrate that the TBX5 transcription factor is expressed not only in the myocardium, but also throughout the embryonic epicardium and coronary vasculature. TBX5 is not expressed in other human fetal vascular beds. Furthermore, immunohistochemical analyses of human embryonic tissues reveals that unlike their epicardial counterparts, delaminating epicardial-derived cells do not express TBX5 as they migrate through the subepicardium before undergoing epithelial-mesenchymal transformation required for coronary vasculogenesis. In the chick, Tbx5 is expressed in the embryonic proepicardial organ (PEO), which is composed of the epicardial and coronary vascular progenitor cells. Retrovirus-mediated overexpression of human TBX5 inhibits cell incorporation of infected proepicardial cells into the nascent chick epicardium and coronary vasculature. TBX5 overexpression as well as antisense-mediated knockdown of chick Tbx5 produce a cell-autonomous defect in the PEO that prevents proepicardial cell migration. Thus, both increasing and decreasing Tbx5 dosage impairs development of the proepicardium. Culture of explanted PEOs demonstrates that untreated chick proepicardial cells downregulate Tbx5 expression during cell migration. Therefore, we propose that Tbx5 participates in regulation of proepicardial cell migration, a critical event in the establishment of the epicardium and coronary vasculature.


Development ◽  
2002 ◽  
Vol 129 (22) ◽  
pp. 5161-5170 ◽  
Author(s):  
Jennifer K. Ng ◽  
Yasuhiko Kawakami ◽  
Dirk Büscher ◽  
Ángel Raya ◽  
Tohru Itoh ◽  
...  

A major gap in our knowledge of development is how the growth and identity of tissues and organs are linked during embryogenesis. The vertebrate limb is one of the best models to study these processes. Combining mutant analyses with gain- and loss-of-function approaches in zebrafish and chick embryos, we show that Tbx5, in addition to its role governing forelimb identity,is both necessary and sufficient for limb outgrowth. We find thatTbx5 functions downstream of WNT signaling to regulateFgf10, which, in turn, maintains Tbx5 expression during limb outgrowth. Furthermore, our results indicate that Tbx5 andWnt2b function together to initiate and specify forelimb outgrowth and identity. The molecular interactions governed by members of the T-box,Wnt and Fgf gene families uncovered in this study provide a framework for understanding not only limb development, but how outgrowth and identity of other tissues and organs of the embryo may be regulated.


Development ◽  
2000 ◽  
Vol 127 (12) ◽  
pp. 2573-2582 ◽  
Author(s):  
D. Yelon ◽  
B. Ticho ◽  
M.E. Halpern ◽  
I. Ruvinsky ◽  
R.K. Ho ◽  
...  

The precursors of several organs reside within the lateral plate mesoderm of vertebrate embryos. Here, we demonstrate that the zebrafish hands off locus is essential for the development of two structures derived from the lateral plate mesoderm - the heart and the pectoral fin. hands off mutant embryos have defects in myocardial development from an early stage: they produce a reduced number of myocardial precursors, and the myocardial tissue that does form is improperly patterned and fails to maintain tbx5 expression. A similar array of defects is observed in the differentiation of the pectoral fin mesenchyme: small fin buds form in a delayed fashion, anteroposterior patterning of the fin mesenchyme is absent and tbx5 expression is poorly maintained. Defects in these mesodermal structures are preceded by the aberrant morphogenesis of both the cardiogenic and forelimb-forming regions of the lateral plate mesoderm. Molecular analysis of two hands off alleles indicates that the hands off locus encodes the bHLH transcription factor Hand2, which is expressed in the lateral plate mesoderm starting at the completion of gastrulation. Thus, these studies reveal early functions for Hand2 in several cellular processes and highlight a genetic parallel between heart and forelimb development.


Sign in / Sign up

Export Citation Format

Share Document