esophageal cancer cell line
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 8 (2) ◽  
pp. 95-103
Author(s):  
Mehrdad Ghiasvand ◽  
Ali Makhdoumi ◽  
Maryam Moghaddam Matin ◽  
Jamil Vaezi ◽  
◽  
...  

Author(s):  
Faiza Sajjada ◽  
Xu-Ying Liua ◽  
Yi-Jia Yanb ◽  
Xing-Ping Zhoua ◽  
Zhi-Long Chena

Background: Photodynamic therapy has been increasingly used to cope with the alarming problem of cancer. Porphyrins and its derivatives are widely used as potent photosensitizers (PS) for PDT. However, hydrophobicity of porphyrins poses a challenge for their use in clinics, while most of the carbon dots (CDs) are known for good biocompatibility, solubility, and pH sensitivity. Objective: To improve the properties/biocompatibility of the pyropheophorbide-α for PDT. Methods: Methods: PPa-CD conjugate was synthesized through covalent interaction using amide condensation. The structure of synthesized conjugate was confirmed by TEM, 1HNMR, and FTIR. The absorption and emission spectra were studied. In vitro, cytotoxicity of the conjugate was examined in the Human esophageal cancer cell line (Eca-109). Results: The results showed that the fluorescence of the drug was increased from its precursor. CD based conjugate could generate ROS as well as enhanced the biocompatibility by decreasing the cytotoxicity. The conjugated drug also showed pH sensitivity in different solutions. Conclusion: The dark toxicity, as well as hemocompatibility, were improved.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Faiza Sajjad ◽  
Yi-Jia Yan ◽  
Davor Margetić ◽  
Zhi-Long Chen

AbstractCarbon based polymer dots have piqued attention of researchers because of excellent biocompatibility, and good solubility. Most of the p-dots are able to generate ROS which is effective for photodynamic therapy for the treatment of cancer while some photosensitizers such as porphyrins possess some drawbacks such as hydrophobicity, and dark toxicity. Therefore in this study we conjugated red emission carbon based polymer with pyropheophorbide-α through amide condensation and π–π stacking. One pot synthesis of the conjugate was successfully achieved. Their photophysiological properties were studied and structures were characterized by FT-IR, TEM and 1HNMR. pH- sensitivity of the conjugates was confirmed using fluorescence and UV–vis spectroscopy. Photo toxicity and dark toxicity of the prepared conjugates were evaluated in human esophageal cancer cell line (Eca-109). Hemocompatibility of the synthesized conjugates was evaluated and proved that the conjugates are safe to use for the treatment of tumor. Our results showed the PS doped p-dots had less dark toxicity and increased light toxicity as well as ROS generation was high as compared to precursor drug. Therefore, incorporation of p-dots to porphyrin improved biocompatibility and enhanced the photodynamic effect.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Maryam Zare ◽  
Heydar Shaverdi ◽  
Soheila Ebrahimi Vosta kalaee

Background: Esophageal cancer is the eighth most common cancer and the sixth most frequent cancer-related death. Despite improvements in treatment approaches, it has remained one of the most challenging cancers for treatment. Thus, it is necessary to introduce novel and efficient methods for treatment. In this regard, the anti-cancer and antioxidant properties of pomegranate have been more concerned. Objectives: The present study aimed to assess the potential cytotoxicity effects of pomegranate on the esophageal cancer cell line. Methods: We cultured esophageal cancer cell line (KYSE-30) and fibroblast cell line (HF2FF) as normal cell line in RPMI-1640/Ham's F12 and RPMI-1640 medium, respectively, with different concentrations of pomegranate seed oil (2, 1, 0.5, 0.25, 0.125, 0.0625, and 0.03125 mg/mL). Then, we evaluated the cytotoxic effects of pomegranate seed oil via morphologic observation and MTT assay after 24, 48, and 72 hours. The wound-healing assay was used for the evaluation of the mobility and migration potential of the treated cells. Results: The results of the MTT assay showed the cytotoxicity and growth inhibitory effects of pomegranate seed oil on esophageal cancer cells. The viability of tumor cells was significantly reduced compared with the untreated control cells and normal cells (P < 0.05), which were dose and time-dependent. The results of the wound-healing assay indicated that pomegranate seed oil could reduce the migration ability of KYSE-30 cells. Conclusions: According to the results, pomegranate seed oil seems to have cytotoxicity effects on esophageal cancer cells. Thus, it might be considered a new, cheap, and safe treatment option for esophageal cancer.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yang Li ◽  
Jianfang Dong ◽  
Peiran Zhao ◽  
Ping Hu ◽  
Dawei Yang ◽  
...  

Three hexacoordinated octahedral nickel (II) complexes, [Ni (Trp-sal) (phen) (CH3OH)] (1), [Ni (Trp-o-van) (phen) (CH3OH)]•2CH3OH (2), and [Ni (Trp-naph) (phen) (CH3OH)] (3) (where Trp-sal = Schiff base derived from tryptophan and salicylaldehyde, Trp-o-van = Schiff base derived from tryptophan and o-vanillin, Trp-naph = Schiff base derived from tryptophan and 2-hydroxy-1-naphthaldehyde, phen = 1, 10-phenanthroline), have been synthesized and characterized as potential anticancer agents. Details of structural study of these complexes using single-crystal X-ray crystallography showed that distorted octahedral environment around nickel (II) ion has been satisfied by three nitrogen atoms and three oxygen atoms. All these complexes displayed moderate cytotoxicity toward esophageal cancer cell line Eca-109 with the IC50 values of 23.95 ± 2.54 μM for 1, 18.14 ± 2.39 μM for 2, and 21.89 ± 3.19 μM for 3. Antitumor mechanism studies showed that complex 2 can increase the autophagy, reactive oxygen species (ROS) levels, and decrease the mitochondrial membrane potential remarkably in a dose-dependent manner in the Eca-109 cells. Complex 2 can cause cell cycle arrest in the G2/M phase. Additionally, complex 2 can regulate the Bcl-2 family and autophagy-related proteins.


ChemMedChem ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. 970-981 ◽  
Author(s):  
Changyu Shan ◽  
Wenqi Hui ◽  
Hongwei Li ◽  
Zheng Wang ◽  
Chunling Guo ◽  
...  

2019 ◽  
Vol 9 (3) ◽  
pp. 215-221 ◽  
Author(s):  
Xin-Wen Zhang ◽  
Yan-Song Ye ◽  
Fan Xia ◽  
Xing-Wei Yang ◽  
Gang Xu

Abstract Six new polyphenols with different isoprenylated xanthones, isoprenylated acylphloroglucinols, and chromone architectures, hyperfaberols A–F (1–6), were isolated from the whole plants of Hypericum faberi along with seven other related known compounds. In which hyperfaberols A/B (1/2) and 12–13 were isoprenylated xanthones, hyperfaberols C–E (3–5) and 8–11 were seven isoprenylated acylphloroglucinol derivatives, while 6–7 were two chromones. Their structures were elucidated by comprehensive analysis of their spectroscopic data as well as detailed comparison with the literature data. Compounds 1 and 11 showed cytotoxities against the human esophageal cancer cell line (ECA-109) and the pancreatic tumor cell line (PANC-1) in vitro, respectively. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document