inhibitory population
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 9)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
pp. 1-54
Author(s):  
Doris Voina ◽  
Stefano Recanatesi ◽  
Brian Hu ◽  
Eric Shea-Brown ◽  
Stefan Mihalas

Abstract As animals adapt to their environments, their brains are tasked with processing stimuli in different sensory contexts. Whether these computations are context dependent or independent, they are all implemented in the same neural tissue. A crucial question is what neural architectures can respond flexibly to a range of stimulus conditions and switch between them. This is a particular case of flexible architecture that permits multiple related computations within a single circuit. Here, we address this question in the specific case of the visual system circuitry, focusing on context integration, defined as the integration of feedforward and surround information across visual space. We show that a biologically inspired microcircuit with multiple inhibitory cell types can switch between visual processing of the static context and the moving context. In our model, the VIP population acts as the switch and modulates the visual circuit through a disinhibitory motif. Moreover, the VIP population is efficient, requiring only a relatively small number of neurons to switch contexts. This circuit eliminates noise in videos by using appropriate lateral connections for contextual spatiotemporal surround modulation, having superior denoising performance compared to circuits where only one context is learned. Our findings shed light on a minimally complex architecture that is capable of switching between two naturalistic contexts using few switching units.


Author(s):  
Tan Szi Hui ◽  
Mohamad Khairi Ishak

Deep reinforcement learning (DRL) which involved reinforcement learning and artificial neural network allows agents to take the best possible actions to achieve goals. Spiking Neural Network (SNN) faced difficulty in training due to the non-differentiable spike function of spike neuron. In order to overcome the difficulty, Deep Q network (DQN) and Deep Q learning with normalized advantage function (NAF) are proposed to interact with a custom environment. DQN is applied for discrete action space whereas NAF is implemented for continuous action space. The model is trained and tested to validate its performance in order to balance the firing rate of excitatory and inhibitory population of spike neuron by using both algorithms. Training results showed both agents able to explore in the custom environment with OpenAI Gym framework. The trained model for both algorithms capable to balance the firing rate of excitatory and inhibitory of the spike neuron. NAF achieved 0.80% of the average percentage error of rate of difference between target and actual neuron rate whereas DQN obtained 0.96%. NAF attained the goal faster than DQN with only 3 steps taken for actual output neuron rate to meet with or close to target neuron firing rate.


Author(s):  
Mohini Sengupta ◽  
Vamsi Daliparthi ◽  
Yann Roussel ◽  
Tuan Vu Bui ◽  
Martha W. Bagnall

AbstractRostro-caudal coordination of spinal motor output is essential for locomotion. Most spinal interneurons project axons longitudinally to govern locomotor output, yet their connectivity along this axis remains unclear. In this study, we use larval zebrafish to map synaptic outputs of a major inhibitory population, V1 (Eng1+) neurons, which are implicated in dual sensory and motor functions. We find that V1 neurons exhibit long axons extending rostrally and exclusively ipsilaterally for an average of 6 spinal segments; however, they do not connect uniformly with their post-synaptic targets along the entire length of their axon. Locally, V1 neurons inhibit motor neurons (both fast and slow) and other premotor targets including V2a, V2b and commissural pre-motor neurons. In contrast, V1 neurons make robust inhibitory contacts throughout the rostral extent of their axonal projections onto a dorsal horn sensory population, the Commissural Primary Ascending neurons (CoPAs). In a computational model of the ipsilateral spinal network, we show that this pattern of short range V1 inhibition to motor and premotor neurons is crucial for coordinated rostro-caudal propagation of the locomotor wave. We conclude that spinal network architecture in the longitudinal axis can vary dramatically, with differentially targeted local and distal connections, yielding important consequences for function.


2020 ◽  
Author(s):  
Luca Pesce ◽  
Annunziatina Laurino ◽  
Vladislav Gavryusev ◽  
Giacomo Mazzamuto ◽  
Giuseppe Sancataldo ◽  
...  

AbstractWe still lack a detailed map of the anatomical disposition of neurons in the human brain. A complete map would be an important step for deeply understanding the brain function, providing anatomical information useful to decipher the neuronal pattern in healthy and diseased conditions. Here, we present several important advances towards this goal, obtained by combining a new clearing method, advanced Light Sheet Microscopy and automated machinelearning based image analysis. We perform volumetric imaging of large sequentially stained human brain slices, labelled for two different neuronal markers NeuN and GAD67, discriminating the inhibitory population and reconstructing the brain connectivity.


2020 ◽  
Author(s):  
Vinay Shirhatti ◽  
Poojya Ravishankar ◽  
Supratim Ray

SummaryGamma oscillations have been hypothesized to play an important role in feature binding, based on the observation that continuous long bars induce stronger gamma in the visual cortex than bars with a small gap. Recently, many studies have shown that natural images, that have discontinuities in several low-level features, do not induce strong gamma oscillations, questioning their role in feature binding. However, the effect of different discontinuities on gamma has not been well studied. To address this, we recorded spikes and local field potential from two monkeys while they were shown gratings with discontinuities in space, orientation, phase or contrast. Gamma, but not spiking activity, drastically reduced with small discontinuities in all cases, suggesting that gamma could be a resonant phenomenon. An excitatory-inhibitory population model with stimulus-tuned recurrent inputs showed such resonant properties. Therefore, gamma could be a signature of excitation-inhibition balance, which gets disrupted due to discontinuities.


2019 ◽  
Vol 31 (11) ◽  
pp. 2252-2265
Author(s):  
Felix Weissenberger ◽  
Marcelo Matheus Gauy ◽  
Xun Zou ◽  
Angelika Steger

In computational neural network models, neurons are usually allowed to excite some and inhibit other neurons, depending on the weight of their synaptic connections. The traditional way to transform such networks into networks that obey Dale's law (i.e., a neuron can either excite or inhibit) is to accompany each excitatory neuron with an inhibitory one through which inhibitory signals are mediated. However, this requires an equal number of excitatory and inhibitory neurons, whereas a realistic number of inhibitory neurons is much smaller. In this letter, we propose a model of nonlinear interaction of inhibitory synapses on dendritic compartments of excitatory neurons that allows the excitatory neurons to mediate inhibitory signals through a subset of the inhibitory population. With this construction, the number of required inhibitory neurons can be reduced tremendously.


2019 ◽  
Author(s):  
Everton J. Agnes ◽  
Andrea I. Luppi ◽  
Tim P. Vogels

Cortical areas comprise multiple types of inhibitory interneurons with stereotypical connectivity motifs, but their combined effect on postsynaptic dynamics has been largely unexplored. Here, we analyse the response of a single postsynaptic model neuron receiving tuned excitatory connections alongside inhibition from two plastic populations. Depending on the inhibitory plasticity rule, synapses remain unspecific (flat), become anti-correlated to, or mirror excitatory synapses. Crucially, the neuron’s receptive field, i.e., its response to presynaptic stimuli, depends on the modulatory state of inhibition. When both inhibitory populations are active, inhibition balances excitation, resulting in uncorrelated postsynaptic responses regardless of the inhibitory tuning profiles. Modulating the activity of a given inhibitory population produces strong correlations to either preferred or non-preferred inputs, in line with recent experimental findings showing dramatic context-dependent changes of neurons’ receptive fields. We thus confirm that a neuron’s receptive field doesn’t follow directly from the weight profiles of its presynaptic afferents.


Author(s):  
Hwayeon Ryu ◽  
Sue Ann Campbell

We study synaptically coupled neuronal networks to identify the role of coupling delays in network synchronized behaviour. We consider a network of excitable, relaxation oscillator neurons where two distinct populations, one excitatory and one inhibitory, are coupled with time-delayed synapses. The excitatory population is uncoupled, while the inhibitory population is tightly coupled without time delay. A geometric singular perturbation analysis yields existence and stability conditions for periodic solutions where the excitatory cells are synchronized and different phase relationships between the excitatory and inhibitory populations can occur, along with formulae for the periods of such solutions. In particular, we show that if there are no delays in the coupling, oscillations where the excitatory population is synchronized cannot occur. Numerical simulations are conducted to supplement and validate the analytical results. The analysis helps to explain how coupling delays in either excitatory or inhibitory synapses contribute to producing synchronized rhythms. This article is part of the theme issue ‘Nonlinear dynamics of delay systems’.


2019 ◽  
Author(s):  
Joseph Del Rosario ◽  
Anderson Speed ◽  
Hayley Arrowood ◽  
Cara Motz ◽  
Machelle Pardue ◽  
...  

AbstractSensory impairments are a core feature of autism spectrum disorder (ASD). These impairments affect visual perception (Robertson and Baron-Cohen, 2017), and have been hypothesized to arise from imbalances in cortical excitatory and inhibitory activity (Rubenstein and Merzenich, 2003; Nelson and Valakh, 2015; Sohal and Rubenstein, 2019); however, there is little direct evidence testing this hypothesis in identified excitatory and inhibitory neurons during impairments of sensory perception. Several recent studies have examined cortical activity in transgenic mouse models of ASD (Goel et al., 2018; Antoine et al., 2019; Lazaro et al., 2019), but have provided conflicting evidence for excitatory versus inhibitory activity deficits. Here, we utilized a genetically relevant mouse model of ASD (CNTNAP2−/− knockout, KO; Arking et al., 2008; Penagarikano et al., 2011) and directly recorded putative excitatory and inhibitory population spiking in primary visual cortex (V1) while measuring visual perceptual behavior (Speed et al., 2019). We found quantitative impairments in the speed, accuracy, and contrast sensitivity of visual perception in KO mice. These impairments were simultaneously associated with elevated inhibitory and diminished excitatory neuron activity evoked by visual stimuli during behavior, along with aberrant 3 – 10 Hz oscillations in superficial cortical layers 2/3 (L2/3). These results establish that perceptual deficits relevant for ASD can arise from diminished sensory activity of excitatory neurons in feedforward layers of cortical circuits.


2018 ◽  
Author(s):  
Trang-Anh Nghiem ◽  
Bartosz Telenczuk ◽  
Olivier Marre ◽  
Alain Destexhe ◽  
Ulisse Ferrari

Maximum Entropy models can be inferred from large data-sets to uncover how local interactions generate collective dynamics. Here, we employ such models to investigate the characteristics of neurons recorded by multielectrode arrays in the cortex of human and monkey throughout states of wakefulness and sleep. Taking advantage of the separation of excitatory and inhibitory types, we construct a model including this distinction. By comparing the performances of Maximum Entropy models at predicting neural activity in wakefulness and deep sleep, we identify the dominant interactions between neurons in each brain state. We find that during wakefulness, dominant functional interactions are pairwise while during sleep, interactions are population-wide. In particular, inhibitory neurons are shown to be strongly tuned to the inhibitory population. This shows that Maximum Entropy models can be useful to analyze data-sets with excitatory and inhibitory neurons, and can reveal the role of inhibitory neurons in organizing coherent dynamics in cerebral cortex.


Sign in / Sign up

Export Citation Format

Share Document