porphyrin photosensitizers
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 8)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 784 ◽  
pp. 139091
Author(s):  
Yanyan Li ◽  
Guichen Li ◽  
Qian zhang ◽  
Yuxia Li ◽  
Qifan Jia ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1007
Author(s):  
Valeriya V. Kardumyan ◽  
Nadejda A. Aksenova ◽  
Victoria A. Timofeeva ◽  
Alexey V. Krivandin ◽  
Olga V. Shatalova ◽  
...  

In this work, we studied the photocatalytic activity of photosensitizers (PSs) of various natures solubilized with polyvinylpyrrolidone (PVP) and ternary block copolymer ethylene and propylene oxide Pluronic F127 (F127) in a model reaction of tryptophan photo-oxidation in water in the presence of chitosan (CT). Water-soluble compounds (dimegin and trisodium salt of chlorin e6 (Ce6)) and hydrophobic porphyrins (tetraphenylporphyrin (TPP) and its fluorine derivative (TPPF20)) were used as PSs. It was shown that the use of chitosan (Mw ~100 kDa) makes it possible to obtain a system whose activity is comparable to that of the photosensitizer-amphiphilic polymer systems. Thus, the previously observed drop in the photosensitizing activity of PS in the presence of a polysaccharide and amphiphilic polymers (AP) was absent in this case. At the same time, chitosan had practically no inhibitory effect on hydrophobic porphyrins solubilized by Pluronic F127.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 530
Author(s):  
Joe Heffron ◽  
Matthew Bork ◽  
Brooke K. Mayer ◽  
Troy Skwor

Effective broad-spectrum antiviral treatments are in dire need as disinfectants and therapeutic alternatives. One such method of disinfection is photodynamic inactivation, which involves the production of reactive oxygen species from dissolved oxygen in response to light-stimulated photosensitizers. This study evaluated the efficacy of functionalized porphyrin compounds for photodynamic inactivation of bacteriophages as human virus surrogates. A blue-light light emitting diode (LED) lamp was used to activate porphyrin compounds in aqueous solution (phosphate buffer). The DNA bacteriophages ΦX174 and P22 were more resistant to porphyrin TMPyP photodynamic inactivation than RNA bacteriophage fr, with increasing rates of inactivation in the order: ΦX174 << P22 << fr. Bacteriophage ΦX174 was therefore considered a resistant virus suitable for the evaluation of three additional porphyrins. These porphyrins were synthesized from TMPyP by inclusion of a central palladium ion (PdT4) and/or the addition of a hydrophobic C14 chain (PdC14 or C14). While the inactivation rate of bacteriophage ΦX174 via TMPyP was similar to previous reports of resistant viruses, ΦX174 inactivation increased by a factor of approximately 2.5 using the metalloporphyrins PdT4 and PdC14. The order of porphyrin effectiveness was TMPyP < C14 < PdT4 < PdC14, indicating that both Pd2+ ligation and C14 functionalization aided virus inactivation.


2021 ◽  
Author(s):  
Jussi Isokuortti ◽  
Kim Kuntze ◽  
Matti Virkki ◽  
Zafar Ahmed ◽  
Elina Vuorimaa-Laukkanen ◽  
...  

Designing azobenzene photoswitches capable of selective and efficient photoisomerization by long wavelength excitation is a long-standing challenge. Indirect excitation can expand the properties of the photoswitching system beyond the intrinsic limits of azobenzenes. Herein, a rapid Z-to-E isomerization of two ortho-functionalized azobenzenes with near-unity photoconversion was facilitated via triplet energy transfer upon red and near-infrared (up to 770 nm) excitation of porphyrin photosensitizers in catalytic micromolar concentrations. Our results indicate that the whole process of triplet-sensitized isomerization is strongly entropy-driven. This ensures efficient Z-to-E photoswitching even when the azobenzene triplet energy is considerably higher (>200 meV) than for the sensitizer, which is the key for the expansion of excitation wavelengths into the near-infrared spectral range.<br>


2021 ◽  
Author(s):  
Jussi Isokuortti ◽  
Kim Kuntze ◽  
Matti Virkki ◽  
Zafar Ahmed ◽  
Elina Vuorimaa-Laukkanen ◽  
...  

Designing azobenzene photoswitches capable of selective and efficient photoisomerization by long wavelength excitation is a long-standing challenge. Indirect excitation can expand the properties of the photoswitching system beyond the intrinsic limits of azobenzenes. Herein, a rapid Z-to-E isomerization of two ortho-functionalized azobenzenes with near-unity photoconversion was facilitated via triplet energy transfer upon red and near-infrared (up to 770 nm) excitation of porphyrin photosensitizers in catalytic micromolar concentrations. Our results indicate that the whole process of triplet-sensitized isomerization is strongly entropy-driven. This ensures efficient Z-to-E photoswitching even when the azobenzene triplet energy is considerably higher (>200 meV) than for the sensitizer, which is the key for the expansion of excitation wavelengths into the near-infrared spectral range.<br>


2020 ◽  
Vol 11 (4) ◽  
pp. 427-437 ◽  
Author(s):  
Qizhi Zhang ◽  
Jun He ◽  
Wenmei Yu ◽  
Yanchun Li ◽  
Zhenhua Liu ◽  
...  

This article reviews the research status of porphyrin photosensitizers; future perspectives and current challenges are discussed.


Author(s):  
I.V. Semenova ◽  
V.P. Belik ◽  
D.M. Beltukova ◽  
I.N. Meshkov ◽  
Yu.G. Gorbunova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document