scholarly journals Using CME Progenitors to Assess CME Geoeffectiveness

2021 ◽  
Vol 257 (2) ◽  
pp. 33
Author(s):  
Kashvi Mundra ◽  
V. Aparna ◽  
Petrus Martens

Abstract There have been a few previous studies claiming that the effects of geomagnetic storms strongly depend on the orientation of the magnetic cloud portion of coronal mass ejections (CMEs). Aparna & Martens, using halo-CME data from 2007 to 2017, showed that the magnetic field orientation of filaments at the location where CMEs originate on the Sun can be used to credibly predict the geoeffectiveness of the CMEs being studied. The purpose of this study is to extend their survey by analyzing the halo-CME data for 1996–2006. The correlation of filament axial direction on the solar surface and the corresponding Bz signatures at L1 are used to form a more extensive analysis for the results previously presented by Aparna & Martens. This study utilizes Solar and Heliospheric Observatory Extreme-ultraviolet Imaging Telescope 195 Å, Michelson Doppler Imager magnetogram images, and Kanzelhöhe Solar Observatory and Big Bear Solar Observatory Hα images for each particular time period, along with ACE data for interplanetary magnetic field signatures. Utilizing all these, we have found that the trend in Aparna & Martens’ study of a high likelihood of correlation between the axial field direction on the solar surface and Bz orientation persists for the data between 1996 and 2006, for which we find a match percentage of 65%.

2001 ◽  
Vol 203 ◽  
pp. 276-279
Author(s):  
J. Ireland ◽  
A. Fludra

The Coronal Diagnostic Spectrometer (CDS) on SOHO carries out daily synoptic observations of the Sun in four EUV (extreme ultraviolet) spectra: He I 584 Å, O V 630 Å, Mg IX 368 Å and Fe XVI 360 Å, over a 4 arcmin-wide strip along the solar central meridian. Using 53 active regions observed in this data set along with co-temporally observed SOHO-MDI (Michelson Doppler Imager) magnetograms we study the correlation of the chromospheric, transition region and coronal emission with the photospheric magnetic field for meridional active regions, probing the relation between the radiative output and magnetic observables. We also establish empirical, quantitative relations among intensities of different lines, and between intensities and the magnetic field flux.


2013 ◽  
Vol 31 (8) ◽  
pp. 1357-1364 ◽  
Author(s):  
S. Zharkov ◽  
S. Shelyag ◽  
V. Fedun ◽  
R. Erdélyi ◽  
M. J. Thompson

Abstract. We present observational evidence for the presence of MHD (magnetohydrodynamic) waves in the solar photosphere deduced from SOHO/MDI (Solar and Heliospheric Observatory/Michelson Doppler Imager) Dopplergram velocity observations. The magneto-acoustic perturbations are observed as acoustic power enhancement in the sunspot umbra at high-frequency bands in the velocity component perpendicular to the magnetic field. We use numerical modelling of wave propagation through localised non-uniform magnetic field concentration along with the same filtering procedure as applied to the observations to identify the observed waves. Guided by the results of the numerical simulations we classify the observed oscillations as magneto-acoustic waves excited by the trapped sub-photospheric acoustic waves. We consider the potential application of the presented method as a diagnostic tool for magnetohelioseismology.


2006 ◽  
Vol 24 (10) ◽  
pp. 2743-2758 ◽  
Author(s):  
D. M. Willis ◽  
R. Henwood ◽  
F. R. Stephenson

Abstract. The validity of a technique developed by the authors to identify historical occurrences of intense geomagnetic storms, which is based on finding approximately coincident observations of sunspots and aurorae recorded in East Asian histories, is corroborated using more modern sunspot and auroral observations. Scientific observations of aurorae in Japan during the interval 1957–2004 are used to identify geomagnetic storms that are sufficiently intense to produce auroral displays at low geomagnetic latitudes. By examining white-light images of the Sun obtained by the Royal Greenwich Observatory, the Big Bear Solar Observatory, the Debrecen Heliophysical Observatory and the Solar and Heliospheric Observatory spacecraft, it is found that a sunspot large enough to be seen with the unaided eye by an "experienced" observer was located reasonably close to the central solar meridian immediately before all but one of the 30 distinct Japanese auroral events, which represents a 97% success rate. Even an "average" observer would probably have been able to see a sunspot with the unaided eye before 24 of these 30 events, which represents an 80% success rate. This corroboration of the validity of the technique used to identify historical occurences of intense geomagnetic storms is important because early unaided-eye observations of sunspots and aurorae provide the only possible means of identifying individual historical geomagnetic storms during the greater part of the past two millennia.


2009 ◽  
Vol 27 (1) ◽  
pp. 185-197 ◽  
Author(s):  
D. M. Willis ◽  
R. Henwood ◽  
F. R. Stephenson

Abstract. A further study is made of the validity of a technique developed by the authors to identify historical occurrences of intense geomagnetic storms, which is based on finding approximately coincident observations of sunspots and aurorae recorded in East Asian histories. Previously, the validity of this technique was corroborated using scientific observations of aurorae in Japan during the interval 1957–2004 and contemporaneous white-light images of the Sun obtained by the Royal Greenwich Observatory, the Big Bear Solar Observatory, the Debrecen Heliophysical Observatory, and the Solar and Heliospheric Observatory spacecraft. The present investigation utilises a list of major geomagnetic storms in the interval 1868–2008, which is based on the magnitude of the AA* magnetic index, and reconstructed solar images based on the sunspot observations acquired by the Royal Greenwich Observatory during the shorter interval 1874–1976. It is found that a sunspot large enough to be seen with the unaided eye by an "experienced" observer was located reasonably close to the central solar meridian for almost 90% of these major geomagnetic storms. Even an "average" observer would easily achieve a corresponding success rate of 70% and this success rate increases to about 80% if a minority of ambiguous situations are interpreted favourably. The use of information on major geomagnetic storms, rather than modern auroral observations from Japan, provides a less direct corroboration of the technique for identifying historical occurrences of intense geomagnetic storms, if only because major geomagnetic storms do not necessarily produce auroral displays over East Asia. Nevertheless, the present study provides further corroboration of the validity of the original technique for identifying intense geomagnetic storms. This additional corroboration of the original technique is important because early unaided-eye observations of sunspots and aurorae provide the only possible means of identifying individual geomagnetic storms during the greater part of the past two millennia.


2016 ◽  
Vol 12 (S328) ◽  
pp. 137-139
Author(s):  
Alexandre José de Oliveira e Silva ◽  
Caius Lucius Selhorst

AbstractIn this work, we analysed the physical parameters of the spotless actives regions observed during solar minimum 23 – 24 (2007 – 2010). The study was based on radio maps at 17 GHz obtained by the Nobeyama Radioheliograph (NoRH) and magnetograms provided by the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO). The results shows that the spotless active regions presents the same radio characteristics of a ordinary one, they can live in the solar surface for long periods (>10 days), and also can present small flares.


Solar Physics ◽  
2019 ◽  
Vol 295 (1) ◽  
Author(s):  
A. Hamada ◽  
T. Asikainen ◽  
K. Mursula

AbstractSynoptic maps of solar EUV intensities have been constructed for many decades in order to display the distribution of the different EUV emissions across the solar surface, with each map representing one Carrington rotation (i.e. one rotation of the Sun). This article presents a new solar EUV synoptic map dataset based on full-disk images from the Solar and Heliospheric Observatory/Extreme Ultraviolet Imaging Telescope (SOHO/EIT) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA). In order to remove the significant and complicated drift of EIT and AIA EUV intensities due to sensor degradation, we construct the synoptic maps in standardized intensity scale. We describe a method of homogenizing the SOHO/EIT maps with SDO/AIA maps by transforming the EIT intensity histograms to AIA levels. The new maps cover the years from 1996 to 2018 with 307 SOHO/EIT and 116 SDO/AIA synoptic maps, respectively. These maps provide a systematic and homogeneous view of the entire solar surface in four EUV wavelengths, and are well suited, e.g., for studying long-term coronal hole evolution.


2012 ◽  
Vol 2 (10) ◽  
pp. 1-3 ◽  
Author(s):  
Praveen Kumar Gupta ◽  
◽  
Puspraj Singh Puspraj Singh ◽  
Puspraj Singh Puspraj Singh ◽  
P. K. Chamadia P. K. Chamadia

Sign in / Sign up

Export Citation Format

Share Document