digitonin permeabilization
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 0)

H-INDEX

13
(FIVE YEARS 0)

2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Talia Arcari ◽  
José Ignacio Manzano ◽  
Francisco Gamarro

ABSTRACT We have identified and characterized ABCI3 as a new mitochondrial ABC transporter from Leishmania major. Localization studies using confocal microscopy, a surface biotinylation assay, and trypsin digestion after digitonin permeabilization suggested that ABCI3 presents a dual localization in both mitochondria and the plasma membrane. From studies using parasites with a single knockout of ABCI3 (ABCI3 +/−), we provide evidence that ABCI3 is directly involved in susceptibility to the trivalent form of antimony (SbIII) and metal ions. Attempts to obtain parasites with a double knockout of ABCI3 were unsuccessful, suggesting that ABCI3 could be an essential gene in L. major. ABCI3 +/− promastigotes were 5-fold more resistant to SbIII than the wild type, while ABCI3 +/− amastigotes were approximately 2-fold more resistant to pentavalent antimony (SbV). This resistance phenotype was associated with decreased SbIII accumulation due to decreased SbIII uptake. ABCI3 +/− parasites presented higher ATP levels and generated less mitochondrial superoxide after SbIII incubation. Finally, we observed that ABCI3 +/− parasites showed a slightly higher infection capacity than wild-type and add-back ABCI3 +/−::3×FABCI3 parasites; however, after 72 h the number of ABCI3 +/− intracellular parasites per macrophage increased significantly. Our results show that ABCI3 is responsible for SbIII transport inside mitochondria, where it contributes to enhancement of the general toxic effects caused by SbIII. To our knowledge, ABCI3 is the first ABC transporter which is involved in susceptibility toward antimony, conferring SbIII resistance to parasites when it is partially deleted.


2015 ◽  
Vol 26 (10) ◽  
pp. 1918-1934 ◽  
Author(s):  
Sergio A. Mojica ◽  
Kelley M. Hovis ◽  
Matthew B. Frieman ◽  
Bao Tran ◽  
Ru-ching Hsia ◽  
...  

SINC, a new type III secreted protein of the avian and human pathogen Chlamydia psittaci, uniquely targets the nuclear envelope of C. psittaci–infected cells and uninfected neighboring cells. Digitonin-permeabilization studies of SINC-GFP–transfected HeLa cells indicate that SINC targets the inner nuclear membrane. SINC localization at the nuclear envelope was blocked by importazole, confirming SINC import into the nucleus. Candidate partners were identified by proximity to biotin ligase-fused SINC in HEK293 cells and mass spectrometry (BioID). This strategy identified 22 candidates with high confidence, including the nucleoporin ELYS, lamin B1, and four proteins (emerin, MAN1, LAP1, and LBR) of the inner nuclear membrane, suggesting that SINC interacts with host proteins that control nuclear structure, signaling, chromatin organization, and gene silencing. GFP-SINC association with the native LEM-domain protein emerin, a conserved component of nuclear “lamina” structure, or with a complex containing emerin was confirmed by GFP pull down. Our findings identify SINC as a novel bacterial protein that targets the nuclear envelope with the capability of globally altering nuclear envelope functions in the infected host cell and neighboring uninfected cells. These properties may contribute to the aggressive virulence of C. psittaci.


2013 ◽  
Vol 12 (12) ◽  
pp. 1664-1673 ◽  
Author(s):  
Ingrid Škodová ◽  
Zdeněk Verner ◽  
Fréderic Bringaud ◽  
Peter Fabian ◽  
Julius Lukeš ◽  
...  

ABSTRACT Glycerol-3-phosphate dehydrogenases (G3PDHs) constitute a shuttle that serves for regeneration of NAD + reduced during glycolysis. This NAD-dependent enzyme is employed in glycolysis and produces glycerol-3-phosphate from dihydroxyacetone phosphate, while its flavin adenine dinucleotide (FAD)-dependent homologue catalyzes a reverse reaction coupled to the respiratory chain. Trypanosoma brucei possesses two FAD-dependent G3PDHs. While one of them (mitochondrial G3PDH [mtG3PDH]) has been attributed to the mitochondrion and seems to be directly involved in G3PDH shuttle reactions, the function of the other enzyme (putative G3PDH [putG3PDH]) remains unknown. In this work, we used RNA interference and protein overexpression and tagging to shed light on the relative contributions of both FAD-G3PDHs to overall cellular metabolism. Our results indicate that mtG3PDH is essential for the bloodstream stage of T. brucei , while in the procyclic stage the enzyme is dispensable. Expressed putG3PDH-V5 was localized to the mitochondrion, and the data obtained by digitonin permeabilization, Western blot analysis, and immunofluorescence indicate that putG3PDH is located within the mitochondrion.


2006 ◽  
Vol 96 (6) ◽  
pp. 3082-3087 ◽  
Author(s):  
Chad P. Grabner ◽  
Aaron P. Fox

Neurotransmitter release is a steep function of the intracellular calcium ion concentration ([Ca2+]i) at the release sites. Both the Ca2+ amplitude and the time course appear to be important for specifying neurotransmitter release. Ca2+ influx regulates the number of vesicles exocytosed as well as the amount of neurotransmitter each individual vesicle releases. In our study we stimulated mouse chromaffin cells in two different ways to alter Ca2+ presentation at the release sites. One method, digitonin permeabilization followed by exposure to Ca2+, allows for a large uniform global elevation of [Ca2+]i, whereas the second method, application of nicotine, depolarizes chromaffin cells and activates voltage-dependent Ca2+ channels, thereby producing more phasic and localized changes in [Ca2+]i. Using amperometry to monitor catecholamine release, we show that both kinds of stimuli elicit the exocytosis of similar quantities of neurotransmitter per large dense core vesicles (LDCVs) released. Even so, the release process was quite different for each stimulus; nicotine-elicited events were small and slow, whereas digitonin events were, in comparison, large and fast. In addition, the transient opening of the fusion pore, called the “foot,” was essentially absent in digitonin-stimulated cells, but was quite common in nicotine-stimulated cells. Thus even though both strong stimuli used in this study elicited the release of many vesicles it appears that the differences in the Ca2+ levels at the release sites were key determinants for the fusion and release of individual vesicles.


2001 ◽  
Vol 48 (5) ◽  
pp. 588-594 ◽  
Author(s):  
CLAUDIA O. RODRIGUES ◽  
ROSANA CATISTI ◽  
SERGIO A. UYEMURA ◽  
ANIBAL E. VERCESI ◽  
RENEE LIRA ◽  
...  

2000 ◽  
Vol 6 (1-2) ◽  
pp. 86-90 ◽  
Author(s):  
Francine Tramontina ◽  
Juliana Karl ◽  
Carmem Gottfried ◽  
Andreas Mendez ◽  
Daniela Gonçalves ◽  
...  

1998 ◽  
Vol 141 (4) ◽  
pp. 863-874 ◽  
Author(s):  
Ralph H. Kehlenbach ◽  
Achim Dickmanns ◽  
Larry Gerace

We have developed a permeabilized cell assay to study the nuclear export of the shuttling transcription factor NFAT, which contains a leucine-rich export signal. The assay uses HeLa cells that are stably transfected with NFAT fused to the green fluorescent protein (GFP). Nuclear export of GFP–NFAT in digitonin-permeabilized cells occurs in a temperature- and ATP-dependent manner and can be quantified by flow cytometry. In vitro NFAT export requires the GTPase Ran, which is released from cells during the digitonin permeabilization. At least one additional rate-limiting export factor is depleted from permeabilized cells by a preincubation at 30°C in the absence of cytosol. This activity can be provided by cytosolic or nucleoplasmic extracts in a subsequent export step. Using this assay, we have purified a second major export activity from cytosol. We found that it corresponds to CRM1, a protein recently reported to be a receptor for certain leucine-rich export sequences. CRM1 appears to be imported into the nucleus by a Ran-dependent mechanism that is distinct from conventional signaling pathways. Considered together, our studies directly demonstrate by fractionation and reconstitution that nuclear export of NFAT is mediated by multiple nucleocytoplasmic shuttling factors, including Ran and CRM1.


1997 ◽  
Vol 137 (2) ◽  
pp. 445-458 ◽  
Author(s):  
Anne Schmidt ◽  
Matthew J. Hannah ◽  
Wieland B. Huttner

We have characterized the compartment from which synaptic-like microvesicles (SLMVs), the neuroendocrine counterpart of neuronal synaptic vesicles, originate. For this purpose we have exploited the previous observation that newly synthesized synaptophysin, a membrane marker of synaptic vesicles and SLMVs, is delivered to the latter organelles via the plasma membrane and an internal compartment. Specifically, synaptophysin was labeled by cell surface biotinylation of unstimulated PC12 cells at 18°C, a condition which blocked the appearance of biotinylated synaptophysin in SLMVs and in which there appeared to be no significant exocytosis of SLMVs. The majority of synaptophysin labeled at 18°C with the membraneimpermeant, cleavable sulfo-NHS-SS–biotin was still accessible to extracellularly added MesNa, a 150-D membrane-impermeant thiol-reducing agent, but not to the 68,000-D protein avidin. The SLMVs generated upon reversal of the temperature to 37°C originated exclusively from the membranes containing the MesNaaccessible rather than the MesNa-protected population of synaptophysin molecules. Biogenesis of SLMVs from MesNa-accessible membranes was also observed after a short (2 min) biotinylation of synaptophysin at 37°C followed by chase. In contrast to synaptophysin, transferrin receptor biotinylated at 18° or 37°C became rapidly inaccessible to MesNa. Immunofluorescence and immunogold electron microscopy of PC12 cells revealed, in addition to the previously described perinuclear endosome in which synaptophysin and transferrin receptor are colocalized, a sub-plasmalemmal tubulocisternal membrane system distinct from caveolin-positive caveolae that contained synaptophysin but little, if any, transferrin receptor. The latter synaptophysin was selectively visualized upon digitonin permeabilization and quantitatively extracted, despite paraformaldehyde fixation, by Triton X-100. Synaptophysin biotinylated at 18°C was present in these subplasmalemmal membranes. We conclude that SLMVs originate from a novel compartment that is connected to the plasma membrane via a narrow membrane continuity and lacks transferrin receptor.


1997 ◽  
Vol 8 (3) ◽  
pp. 431-442 ◽  
Author(s):  
M E Graham ◽  
V Gerke ◽  
R D Burgoyne

The Ca2+/phospholipid/cytoskeletal-binding protein annexin II has been proposed to play an important role in Ca(2+)-dependent exocytosis; however, the evidence for this role is inconclusive. More direct evidence obtained by manipulating annexin II levels in cells is still required. We have attempted to do this by generating stably transfected PC12 cell lines expressing proteins which elevate or lower functional annexin II levels and using these cell lines to investigate Ca(2+)-dependent exocytosis. Three cell lines were generated: one expressing an annexin II mutant which aggregates annexin II in at least a proportion of the cells, thereby removing functional protein from the cell; a mixed clonal cell line constitutively overexpressing human annexin II; and a clonal cell line capable of over-expressing annexin II in the presence of sodium butyrate. After digitonin permeabilization, Ca(2+)-dependent dopamine release from these cell lines was compared with that from control nontransfected cells, and, in addition, release was compared in induced to uninduced cells. There were no significant differences in Ca(2+)-dependent exocytosis between any of the transfected cell lines before or after induction and the control cells. In addition, nontransfected PC12 cells treated with nerve growth factor, which elevates annexin II levels severalfold, failed to increase Ca(2+)-dependent exocytosis after digitonin permeabilization, compared with control cells. We conclude that annexin II is not an important regulator of Ca(2+)-dependent exocytosis in PC12 cells.


1996 ◽  
Vol 132 (3) ◽  
pp. 325-334 ◽  
Author(s):  
J W Zhang ◽  
P B Lazarow

Peb1 is a peroxisome biogenesis mutant isolated in Saccharomyces cerevisiae that is selectively defective in the import of thiolase into peroxisomes but has a normal ability to package catalase, luciferase and acyl-CoA oxidase (Zhang, J. W., C. Luckey, and P. B. Lazarow. 1993. Mol. Biol. Cell. 4:1351-1359). Thiolase differs from these other peroxisomal proteins in that it is targeted by an NH2-terminal, 16-amino acid peroxisomal targeting sequence type 2 (PTS 2). This phenotype suggests that the PEB1 protein might function as a receptor for the PTS2. The PEB1 gene has been cloned by functional complementation. It encodes a 42,320-D, hydrophilic protein with no predicted transmembrane segment. It contains six WD repeats that comprise the entire protein except for the first 55 amino acids. Peb1p was tagged with hemagglutinin epitopes and determined to be exclusively within peroxisomes by digitonin permeabilization, immunofluorescence, protease protection and immuno-electron microscopy (Zhang, J. W., and P. B. Lazarow. 1995. J. Cell Biol. 129:65-80). Peb1p is identical to Pas7p (Marzioch, M., R. Erdmann, M. Veenhuis, and W.-H. Kunau. 1994. EMBO J. 13: 4908-4917). We have now tested whether Peb1p interacts with the PTS2 of thiolase. With the two-hybrid assay, we observed a strong interaction between Peb1p and thiolase that was abolished by deleting the first 16 amino acids of thiolase. An oligopeptide consisting of the first 16 amino acids of thiolase was sufficient for the affinity binding of Peb1p. Binding was reduced by the replacement of leucine with arginine at residue five, a change that is known to reduce thiolase targeting in vivo. Finally, a thiolase-Peb1p complex was isolated by immunoprecipitation. To investigate the topogenesis of Peb1p, its first 56-amino acid residues were fused in front of truncated thiolase lacking the NH2-terminal 16-amino acid PTS2. The fusion protein was expressed in a thiolase knockout strain. Equilibrium density centrifugation and immunofluorescence indicated that the fusion protein was located in peroxisomes. Deletion of residues 6-55 from native Peb1p resulted in a cytosolic location and the loss of function. Thus the NH2-terminal 56-amino acid residues of Peb1p are necessary and sufficient for peroxisomal targeting. Peb1p is found in peroxisomes whether thiolase is expressed or not. These results suggest that Peb1p (Pas7p) is an intraperoxisomal receptor for the type 2 peroxisomal targeting signal.


Sign in / Sign up

Export Citation Format

Share Document