adult habitat
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Gabriela M. Yamhure ◽  
Nathalie Reyns ◽  
Jesús Pineda

To better understand the hydrodynamic and hydrographic conditions experienced by larvae in the nearshore (within 1 km of shore), and the role that larval behavior plays in mediating shoreward transport to adult benthic habitats, we examined the vertical distribution and concentration of barnacle cyprids in a shallow, nearshore region in southern California, United States. We collected high-resolution physical measurements of currents and temperature at 3 stations (8, 5, and 4 m depths), and high-frequency measurements of barnacle larvae at a 4 m deep station ∼300 m from shore. Larvae were sampled from distinct 1 m depth intervals between the surface and the bottom (0–1 m, 1–2 m, 2–3 m, 3 m-bottom), each hour for overnight periods that ranged between 13 to 24 h in five cruises during the summers of 2017 and 2018. Barnacle cyprids of Chthamalus fissus predominated in all samples. Thermal stratification decreased closer to shore, but when the nearshore-most station remained stratified (Δ°C m–1 ≥ 0.1), C. fissus cyprid concentrations were high to extremely abundant (exceeding 200 and 4,000 individuals m–3, respectively). There were significant positive correlations between thermal stratification and the log-transformed C. fissus concentration at cruise-to-cruise scales, and between stratification and vertical variability in the high-frequency cross-shore currents at 2-day scales. Additionally, estimated larval transport was relatively high and shoreward when nearshore thermal stratification was greatest. Significant, albeit small, diel differences in cyprid distributions were also observed, with the proportion of cyprids increasing near the surface at night, and concentrations greater during the day than at night. Collectively, these results suggest that thermal stratification increases larval supply to the nearshore, and may enhance onshore larval transport to augment chances of successful settlement and recruitment to the intertidal adult habitat.


2021 ◽  
Author(s):  
◽  
Justis Henault ◽  

The Poweshiek skipperling (Oarisma poweshiek) is endemic to the tall grass prairie in North America, and is now critically endangered globally. Existing populations are scattered amongst tall grass prairie remnants. However, the host food plants eaten by Poweshiek skipperling larvae, the vegetative and microclimatic descriptions of immature and adult microhabitats as well as O. poweshiek behaviour in Manitoba are unknown. I observed the foraging behaviour of larval O. poweshiek in natural habitat to determine the plant species that they consume and document their development. I also followed adults in prairie patches to identify locations in which various activities, such as egg laying or nectar feeding, were facilitated by the habitat. I measured vegetative, structural and microclimatic attributes of microhabitats to determine potential characteristics which facilitate various adult activities and larval development. Larvae appeared to navigate microhabitats to locate host food plant species, alternating between shoots of various species throughout their development. Adults flew almost exclusively in the prairie plant community, rarely flew in shrub or ephemeral wetland communities and were never observed flying in wetland or forest communities. Adult activities appeared to be distributed along a soil moisture gradient, with egg laying associated with the mesic section of the moisture gradient, resting and/or basking associated with the drier section and nectar feeding generally associated with sections throughout the moisture gradient. My research contributes knowledge about larval O. poweshiek foraging and adult habitat interactions in prairies in Manitoba, Canada. Discoveries from my research may guide habitat stewardship to ensure that high quality habitat is available for every life stage and inform reintroduction activities to ensure potential release locations contain required habitat features. Novel descriptions of locations which facilitate larval development and various adult activities may inform provincial and federal recovery strategies to increase the chances of O. poweshiek’s survival. My findings may also initiate further research about the Poweshiek skippering and possibly guide the strategies to recover other Lepidopterans-at-risk. Now with a greater understanding of larval foraging and adult interactions, we may hopefully generate potential causes which explain O. poweshiek’s decline and identify possible solutions to facilitate its successful recovery!


2021 ◽  
Vol 151 ◽  
Author(s):  
Lou Frotté ◽  
Loïc Michel ◽  
Gilles Lepoint ◽  
Sébastien Cordonnier ◽  
Étienne Bezault ◽  
...  

Native fauna of the tropical volcanic part of Guadeloupe is amphidromous: juveniles born in rivers but that grow in the sea need to migrate upstream to colonise their adult habitat in rivers. This migration is affected by any human-made obstacles placed in their way. Moreover, on volcanic tropical islands, streams are the main source of water catchment for the human population. This deeply affects river hydrology and characteristics. Both damming and water catchment potentially affect community diversity and species demography, but they may also alter the trophic ecology of the river fauna. Using stable isotopes and the stable isotope Bayesian ellipses approach in R (SIBER), this study aimed to assess the isotopic niche variability of riverine fauna of three persistent small rivers of Basse-Terre Island (Guadeloupe) affected by damming and water catchment. Using electrofishing, decapods and fishes (gobies) of three rivers were sampled upstream and downstream of dams. Our results demonstrated that the variability of the isotopic niches was extremely high between rivers but varied less between stations of the same river. Our results revealed complex and river-specific effects and a pattern merged with natural variability. Our two hypotheses (i.e., increase of resources upstream of dams and differential responses of trophic guilds to damming and water catchment) were only weakly supported and never in an unambiguous manner. Our study showed that it is necessary to consider the ‘noise’ generated by natural variability to observe and understand changes in the trophic ecology of associated fauna in relation to damming and water catchment.


Author(s):  
Andri Wibowo

Otodus megalodon is known as the biggest shark ever alive and recent records show this species was only existed in America, Africa and Europe continents in the last Miocene period 20 million years ago (Ma). Recently, megalodon teeth have been discovered in South coast of West Java. Here this study aims to present and model the presence of O. megalodon. The length of the excavated tooth was ranging from 13 to 19 cm. The lithological analysis shows that the tooth was found in Miocene rock layers. Paleogeographic model shows that during Miocene southern parts of Java island were submerged including the recent locations where the megalodon tooth have been found. Half parts of the modeled West Java were an ocean with depth ranging from 0 to 200 m. High habitat use preferences by juvenile megalodon were estimated in the shelf (depth 0-40 m) with the size of 1365 km2 . Whereas habitat use preference by adult megalodon was low at this depth. Both juvenile and adult habitat use frequencies were low at a depth of between 80 m and 160 m. Habitat use preferences were increasing at a depth of > 200 m. After Miocene, the paleoclimate records show a decline in temperature and lead to the decline of whale population in ocean. The declining of megalodon’s prey explains the declining of this giant shark especially in post Miocene and early Pliocene periods.


2021 ◽  
Vol 21 (4) ◽  
Author(s):  
Jaime Bertoluci ◽  
Shirley Famelli ◽  
Pedro L. B. Rocha ◽  
Miguel T. Rodrigues

Abstract: Many tropical anurans use forest streams to deposit their eggs, but resource use and selection by tadpoles in tropical forests are poorly known. In the present research, we hypothesized that leaf litter and water depth affect tadpole assemblages due to adult habitat selection for oviposition and/or microhabitat selection by tadpoles. Fieldwork was carried out in the Estação Biológica de Boracéia, an Atlantic Rainforest reserve in São Paulo state, southeastern Brazil. We sampled tadpoles during a year using 40 double-entry funnel-traps distributed along four streams in the forest. Only leaf litter effects are species dependent. We discussed that habitat structure significance depends on the morphological and ecological adaptation to forage and avoid competition within the tadpole community.


2020 ◽  
Vol 287 (1935) ◽  
pp. 20201393
Author(s):  
Kate N. Thomas ◽  
David J. Gower ◽  
Rayna C. Bell ◽  
Matthew K. Fujita ◽  
Ryan K. Schott ◽  
...  

Frogs and toads (Amphibia: Anura) display diverse ecologies and behaviours, which are often correlated with visual capacity in other vertebrates. Additionally, anurans exhibit a broad range of relative eye sizes, which have not previously been linked to ecological factors in this group. We measured relative investment in eye size and corneal size for 220 species of anurans representing all 55 currently recognized families and tested whether they were correlated with six natural history traits hypothesized to be associated with the evolution of eye size. Anuran eye size was significantly correlated with habitat, with notable decreases in eye investment among fossorial, subfossorial and aquatic species. Relative eye size was also associated with mating habitat and activity pattern. Compared to other vertebrates, anurans have relatively large eyes for their body size, indicating that vision is probably of high importance. Our study reveals the role that ecology and behaviour may have played in the evolution of anuran visual systems and highlights the usefulness of museum specimens, and importance of broad taxonomic sampling, for interpreting macroecological patterns.


Author(s):  
Paulina Gebauer ◽  
Luis Giménez ◽  
Iván Hinojosa ◽  
Kurt Paschke

Settlement and metamorphosis are two crucial processes in organisms with a biphasic life cycle, forming the link between the pelagic larva and benthic juvenile-adult. In general, these processes occur during the final larval stage. Among crustaceans, settlement behavior and the cues that trigger settlement and metamorphosis have been studied in greater depth in barnacles than in decapods, likely a result of the former losing the ability to move after they join the benthic juvenile-adult population, undergoing metamorphosis. Both barnacles and decapods respond to different environmental cues associated with the adult habitat, such as substratum, biofilm, and the presence of conspecifics. In the absence of cues, larvae can delay their metamorphosis for a period of time. This ability to prolong the development can be advantageous because it increases the probability of settling in a suitable habitat. However, delayed metamorphosis has also associated costs (e.g., smaller size, lower growth rate, and higher mortality), which may be carried over to subsequent development stages, with consequences for recruitment.


2020 ◽  
Vol 190 (2) ◽  
pp. 737-756
Author(s):  
Jason Hodin ◽  
Matthew C Ferner ◽  
Brian Gaylord

Abstract Ocean organisms as diverse as seaweeds and sea cucumbers exhibit life cycles in which dispersal occurs primarily via microscopic larvae or spores, with adults exhibiting limited or even no dispersal. In benthic animals, the larval stage concludes with irreversible settlement into the benthos. The decision of where and when to settle is thus one of substantial import. Prior work has shown that settlement in two shoreline echinoids (a sea urchin and a sand dollar) is unexpectedly sensitive to an environmental feature (intense fluid turbulence) that can be considered as a signal to larvae of their arrival in the neighbourhood of the hydrodynamically energetic habitats in which these taxa live as adults. Here, we used a comparative approach to explore the evolution of turbulence responsiveness in late-stage echinoid larvae. We examined three pairs of closely related sea urchins that differ in the energetic exposure of their adult habitats and found that larval responsiveness to turbulence was more pronounced in urchins that settle in more hydrodynamically exposed locations. These results raise the possibility that evolutionary differences in larval responsiveness to environmental indicators of appropriate adult habitat might reinforce or even provide a mechanism for vicariance in the ocean.


2019 ◽  
Vol 128 (1) ◽  
pp. 107-121 ◽  
Author(s):  
Katherine E Dale ◽  
M Timothy Tinker ◽  
Rita S Mehta

Abstract The geographical range of many marine species is strongly influenced by the dispersal potential of propagules such as eggs and larvae. Here, we investigate morphological diversity and the effect of body shape on geographical range of leptocephali, the unique, laterally compressed larvae of eels (order Anguilliformes). We used phylogenetically informed analyses to examine the morphological variation of larvae for 17 Eastern Pacific eel species from three adult habitats. We also investigated whether morphological traits of leptocephali could predict larval latitudinal range, hypothesizing that body shape may influence passive dispersal via currents. We found that no two species shared the same multivariate growth trajectories, with the size and scaling of pectoral fin length and snout-to-anus length being particularly variable. Larvae with longer relative predorsal and snout-to-anus lengths at median sizes exhibited wider larval geographical ranges. Body aspect ratio and maximum body length at metamorphosis, two traits we hypothesized to be important for passive transport, were not significant predictors of maximal larval range. We discovered an increase in phylogenetic signal over larval development as eels approach metamorphosis, potentially due to similar selective pressures between related species (such as juvenile habitat or adult morphology). Lastly, we conclude that larval body shape is probably influenced by adult habitat and adult morphology.


Sign in / Sign up

Export Citation Format

Share Document