protoplast preparation
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 7)

H-INDEX

12
(FIVE YEARS 1)

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Maria G. Savvidou ◽  
Angelo Ferraro ◽  
Petros Schinas ◽  
Diomi Mamma ◽  
Dimitris Kekos ◽  
...  

Microalgae are used in industrial and pharmaceutical applications. Their performance on biological applications may be improved by their immobilization. This study presents a way of cell immobilization using microalgae carrying magnetic properties. Nannochloropsis oceanica and Scenedasmus almeriensis cells were treated enzymatically (cellulase) and mechanically (glass beads), generating protoplasts as a means of incorporation of magnetic nanoparticles. Scanning electron microscopy images verified the successful cell wall destruction for both of the examined microalgae cells. Subsequently, protoplasts were transformed with magnetic nanoparticles by a continuous electroporation method and then cultured on a magnetic surface. Regeneration of transformed protoplasts was optimized using various organic carbon and amino acid supplements. Both protoplast preparation methods demonstrated similar efficiency. Casamino acids, as source of amino acids, were the most efficient compound for N. oceanica protoplasts regeneration in enzymatic and mechanical treatment, while for S. almeriensis protoplasts regeneration, fructose, as source of organic carbon, was the most effective. Protoplasts transformation efficiency values with magnetic nanoparticles after enzymatic or mechanical treatments for N. oceanica and S. almeriensis were 17.8% and 10.7%, and 18.6% and 15.7%, respectively. Finally, selected magnetic cells were immobilized and grown on a vertical magnetic surface exposed to light and without any supplement.


2021 ◽  
Vol 8 (1) ◽  
pp. 35-44
Author(s):  
Zuzana Brnáková ◽  
Jarmila Farkašovská ◽  
Annamária Rusnáková ◽  
Andrej Godány

Many streptomycetes strains are hardly or not at all transformable via protoplasts, or there is a problem with the regeneration of protoplasts. We found that protoplasts are formed directly in cultivation media under submerged conditions in the presence of lytic enzyme. Actinophage μ1/6 endolysin and lysozyme were used in this study. Streptomyces strains were cultivated in several media with glycine and lytic enzyme for 24 and 48h. The highest amounts of protoplasts (about 3 x 107 cfu/ml of cultivation medium) together with the highest regeneration (95%) and transformation frequency (about 2 x 106 – 107 cfu/μg DNA) were obtained reproducibly in YEME medium with high sucrose content. S. aureofaciens B96, as hardly transformable strain because of difficulties with protoplast preparation and their further regeneration, was used in this study. The same procedure was applied to S. lividans 66 TK24 and S. coelicolor A3(2), streptomycetes model strains, to confirm the general use of this method. Moreover, such cultivation process was appropriate for additional quick isolation of either chromosomal as well as plasmid DNA that could be further used in recombinant DNA techniques.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Xue-feng Xu ◽  
Hai-yan Zhu ◽  
Yin-feng Ren ◽  
Can Feng ◽  
Zhi-hao Ye ◽  
...  

Abstract Background Plant protoplasts constitute unique single-cell systems that can be subjected to genomic, proteomic, and metabolomic analysis. An effective and sustainable method for preparing protoplasts from tea plants has yet to be established. The protoplasts were osmotically isolated, and the isolation and purification procedures were optimized. Various potential factors affecting protoplast preparation, including enzymatic composition and type, enzymatic hydrolysis duration, mannitol concentration in the enzyme solution, and iodixanol concentration, were evaluated. Results The optimal conditions were 1.5% (w/v) cellulase and 0.4–0.6% (w/v) macerozyme in a solution containing 0.4 M mannitol, enzymatic hydrolysis over 10 h, and an iodixanol concentration of 65%. The highest protoplast yield was 3.27 × 106 protoplasts g−1 fresh weight. As determined through fluorescein diacetate staining, maximal cell viability was 92.94%. The isolated protoplasts were round and regularly shaped without agglomeration, and they were less than 20 μm in diameter. Differences in preparation, with regard to yield and viability in the tissues (roots, branches, and leaves), cultivars, and cultivation method, were also observed. Conclusions In summary, we reported on a simple, efficient method for preparing protoplasts of whole-organ tissue from tea plant. The findings are expected to contribute to the rapid development of tea plant biology.


2021 ◽  
Author(s):  
Zhen-Zhu Su ◽  
Meng-Di Dai ◽  
Jia-Nan Zhu ◽  
Yu-Lan Zeng ◽  
Xuan-Jun Lu ◽  
...  

Abstract Falciphora oryzae is a dark septate endophyte (DSE) isolated from wild rice roots (Oryza sativa L.). It was classified as a non-clavicitaceous endophyte. The fungus colonizes rice roots, showing a significant increase in agronomic parameters with plant biomass, rice blast resistance, yield, and quality. The construction of the genetic manipulation system is critical to study the relationship between F. oryzae and O. sativa. In the present study, the protoplast preparation and transformation system of F. oryzae was investigated. The key parameters affecting the efficiency of protoplast production, such as osmotic pressure stabilizer, enzyme digestion conditions, and fungal age, were studied. The results showed that F. oryzae strain obtained higher protoplast yield and effective transformation when treated with enzyme digestion solution containing 0.9mol L-1 KCl solution and 10 mg mL−1 glucanase at 30℃ with shaking 80 rpm for 2-3 h. When the protoplasts were plated on a regenerations-agar (RgA) medium containing 1M sucrose, the re-growth rate of protoplasts was the highest. We successfully acquired GFP-expressing transformants by transforming the pKD6-GFP vector into protoplasts. Further, the GFP expression in fungal hyphae possessed good stability and intensity during symbiosis in rice roots.The genetic manipulation system of endophytic fungus facilitates the further exploration the interaction between the endophytic fungus and their hosts.


2020 ◽  
Vol 42 (11) ◽  
pp. 2357-2366 ◽  
Author(s):  
Li-Qun Jin ◽  
Zhe-Wen Xu ◽  
Xiao-Hui Men ◽  
Bo-Zhang ◽  
Zhi-Qiang Liu ◽  
...  

2019 ◽  
Vol 20 (10) ◽  
pp. 2387
Author(s):  
Xiaoqing Niu ◽  
Mengtian Pei ◽  
Chenyu Liang ◽  
Yuexiao Lv ◽  
Xinyi Wu ◽  
...  

Ceratocystis paradoxa, the causal agent of stem-bleeding disease of the coconut palm, causes great losses to the global coconut industry. As the mechanism of pathogenicity of C. paradoxa has not been determined, an exogenous gene marker was introduced into the fungus. In this study, pCT74-sGFP, which contains the green fluorescent protein (GFP) gene, and the hygromycin B resistance gene as a selective marker, was used as an expression vector. Several protoplast release buffers were compared to optimize protoplast preparation. The plasmid pCT74-sGFP was successfully transformed into the genome of C. paradoxa, which was verified using polymerase chain reaction and green fluorescence detection. The transformants did not exhibit any obvious differences from the wild-type isolates in terms of growth and morphological characteristics. Pathogenicity tests showed that the transformation process did not alter the virulence of the X-3314 C. paradoxa strain. This is the first report on the polyethylene glycol-mediated transformation of C. paradoxa carrying a ‘reporter’ gene GFP that was stably and efficiently expressed in the transformants. These findings provide a basis for future functional genomics studies of C. paradoxa and offer a novel opportunity to track the infection process of C. paradoxa.


2018 ◽  
Vol 124 (2) ◽  
pp. 469-479 ◽  
Author(s):  
T. Cheng ◽  
X. Xu ◽  
W. Zhang ◽  
L. Chen ◽  
T. Liu

Sign in / Sign up

Export Citation Format

Share Document