energy intake rate
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 3)

H-INDEX

11
(FIVE YEARS 1)

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3264
Author(s):  
Pey Sze Teo ◽  
Rob M. van Dam ◽  
Ciarán G. Forde

Eating more quickly and consuming foods with a higher energy-intake-rate (EIR: kcal/min) is associated with greater energy intake and adiposity. However, it remains unclear whether individuals who eat more quickly are more likely to consume foods with higher EIR. We investigated the overlap between self-reported eating rate (SRER) and the consumption of higher EIR foods, and their combined impact on daily energy intake and adiposity in a population-based Asian cohort (n = 7011; 21–75y). Food consumption was assessed using a validated Food Frequency Questionnaire. Moderated regression with simple slope analysis was conducted to evaluate whether SRER modified the association between dietary EIR and total dietary energy intakes. Faster eaters consumed a significantly higher proportion of energy from higher EIR foods among overweight individuals, but not among normal-weight individuals. Associations between dietary EIR and total energy intake were stronger among medium (β = 15.04, 95%CI: 13.00–17.08) and fast (β = 15.69, 95%CI: 12.61–18.78) eaters, compared with slower eaters (β = 9.89, 95%CI: 5.11–14.67; p-interaction = 0.032). Higher dietary EIR also tended to be more strongly associated with BMI in fast eaters (β = 0.025, 95%CI: 0.011–0.038) than in slow eaters (β = 0.017, 95%CI: −0.007–0.040). These findings suggest that the combination of eating more quickly and selecting a greater proportion of energy from higher EIR foods (i.e., softly textured, energy dense), promoted higher dietary energy intakes and adiposity.


2020 ◽  
Vol 124 (9) ◽  
pp. 988-997 ◽  
Author(s):  
Arianne van Eck ◽  
Anouk van Stratum ◽  
Dimitra Achlada ◽  
Benoît Goldschmidt ◽  
Elke Scholten ◽  
...  

AbstractFood and energy intake can be effectively lowered by changing food properties, but little is known whether modifying food shape is sufficient to influence intake. This study investigated the influence of cracker shape and cheese viscosity on ad libitum intake of cracker–cheese combinations. Forty-four participants (thirteen males, 23 (sd 3) years, BMI 21 (sd 2) kg/m2) participated in four late afternoon snack sessions (2 × 2 randomised crossover design). Iso-energetic crackers were baked into flat squares and finger-shape cylindrical sticks and combined with a cheese dip varying in viscosity. Approximately eighty crackers and 500 g cheese dip were served in separate large bowls. Participants consumed crackers with cheese dip ad libitum while watching a movie of 30 min. Dipping behaviour and oral processing behaviour were measured simultaneously by hidden balances under the cheese bowls and video recordings. Cracker intake (28 (sem 1) crackers) of cracker–cheese combinations was not influenced by cracker shape. Cheese intake of cracker–cheese combinations was 15 % higher for flat-squared than finger-shape crackers (131 kJ, P = 0·016), as a larger amount of cheese was scooped with flat-squared crackers (2·9 (sem 0·2) v. 2·3 (sem 0·1) g cheese per dip, P < 0·001) and showed higher eating rate and energy intake rate (P < 0·001). Eating rate over snacking time decreased by reducing bite frequency (P < 0·001) while cheese dip size remained fairly constant (P = 0·12). Larger energy intake from condiments was facilitated by increased cracker surface, and this did not trigger earlier satiation. Changing food carrier surface may be a promising approach to moderate energy intake of often high energy dense condiments, sauces and toppings.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Ciarán G Forde ◽  
Monica Mars ◽  
Kees de Graaf

ABSTRACT Background Recent observational data and a controlled in-patient crossover feeding trial show that consumption of “ultra-processed foods” (UPFs), as defined by the NOVA classification system, is associated with higher energy intake, adiposity, and at a population level, higher prevalence of obesity. A drawback of the NOVA classification is the lack of evidence supporting a causal mechanism for why UPFs lead to overconsumption of energy. In a recent study by Hall the energy intake rate in the UPF condition (48 kcal/min) was &gt;50% higher than in the unprocessed condition (31 kcal/min). Extensive empirical evidence has shown the impact that higher energy density has on increasing ad libitum energy intake and body weight. A significant body of research has shown that consuming foods at higher eating rates is related to higher energy intake and a higher prevalence of obesity. Energy density can be combined with eating rate to create a measure of energy intake rate (kcal/min), providing an index of a food's potential to promote increased energy intake. Objective The current paper compared the association between measured energy intake rate and level of processing as defined by the NOVA classification. Methods Data were pooled from 5 published studies that measured energy intake rates across a total sample of 327 foods. Results We show that going from unprocessed, to processed, to UPFs that the average energy intake rate increases from 35.5 ± 4.4, to 53.7 ± 4.3, to 69.4 ± 3.1 kcal/min (P &lt; 0.05). However, within each processing category there is wide variability in the energy intake rate. Conclusions We conclude that reported relations between UPF consumption and obesity should account for differences in energy intake rates when comparing unprocessed and ultra-processed diets. Future research requires well-controlled human feeding trials to establish the causal mechanisms for why certain UPFs can promote higher energy intake.


2014 ◽  
Vol 183 (5) ◽  
pp. 650-659 ◽  
Author(s):  
Thomas Oudman ◽  
Jeroen Onrust ◽  
Jimmy de Fouw ◽  
Bernard Spaans ◽  
Theunis Piersma ◽  
...  

2012 ◽  
Vol 279 (1749) ◽  
pp. 4990-4996 ◽  
Author(s):  
Wonjung Kim ◽  
François Peaudecerf ◽  
Maude W. Baldwin ◽  
John W. M. Bush

We present the results of a combined experimental and theoretical investigation of the dynamics of drinking in ruby-throated hummingbirds. In vivo observations reveal elastocapillary deformation of the hummingbird's tongue and capillary suction along its length. By developing a theoretical model for the hummingbird's drinking process, we investigate how the elastocapillarity affects the energy intake rate of the bird and how its open tongue geometry reduces resistance to nectar uptake. We note that the tongue flexibility is beneficial for accessing, transporting and unloading the nectar. We demonstrate that the hummingbird can attain the fastest nectar uptake when its tongue is roughly semicircular. Finally, we assess the relative importance of capillary suction and a recently proposed fluid trapping mechanism, and conclude that the former is important in many natural settings.


Ibis ◽  
2012 ◽  
Vol 154 (4) ◽  
pp. 781-790 ◽  
Author(s):  
Abel Gyimesi ◽  
Marycha S. Franken ◽  
Nicole Feige ◽  
Bart A. Nolet

Wetlands ◽  
2012 ◽  
Vol 32 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Abel Gyimesi ◽  
Sam Varghese ◽  
Jan De Leeuw ◽  
Bart A. Nolet

2001 ◽  
Vol 58 (3) ◽  
pp. 446-457 ◽  
Author(s):  
G R Guensch ◽  
T B Hardy ◽  
R C Addley

We demonstrated the ability of a mechanistic habitat selection model to predict habitat selection of brown trout (Salmo trutta) and mountain whitefish (Prosopium williamsoni) during summer and winter conditions in the Blacksmith Fork River, Utah. By subtracting energy costs and losses from the gross energy intake rate (GEI) obtained through simulation of prey capture, the model calculates the potential net energy intake rate (NEI) of a given stream position, which is essentially the rate of energy intake available for growth and reproduction. The prey capture model incorporates the size, swimming speed, and reaction distance of the fish; the velocity, depth, temperature, and turbidity of the water; and the density and size composition of the drifting invertebrates. The results suggest that during both summer and winter, the brown trout and mountain whitefish in our study reach avoided locations providing low NEI and preferred locations providing a high ratio of NEI to the swimming cost (SC) at the focal position of the fish (NEI/SC). This supports the idea that the drift-feeding fish in this study selected stream positions that provided adequate NEI for the least amount of swimming effort.


Sign in / Sign up

Export Citation Format

Share Document