scholarly journals Ultra-Processing or Oral Processing? A Role for Energy Density and Eating Rate in Moderating Energy Intake from Processed Foods

2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Ciarán G Forde ◽  
Monica Mars ◽  
Kees de Graaf

ABSTRACT Background Recent observational data and a controlled in-patient crossover feeding trial show that consumption of “ultra-processed foods” (UPFs), as defined by the NOVA classification system, is associated with higher energy intake, adiposity, and at a population level, higher prevalence of obesity. A drawback of the NOVA classification is the lack of evidence supporting a causal mechanism for why UPFs lead to overconsumption of energy. In a recent study by Hall the energy intake rate in the UPF condition (48 kcal/min) was >50% higher than in the unprocessed condition (31 kcal/min). Extensive empirical evidence has shown the impact that higher energy density has on increasing ad libitum energy intake and body weight. A significant body of research has shown that consuming foods at higher eating rates is related to higher energy intake and a higher prevalence of obesity. Energy density can be combined with eating rate to create a measure of energy intake rate (kcal/min), providing an index of a food's potential to promote increased energy intake. Objective The current paper compared the association between measured energy intake rate and level of processing as defined by the NOVA classification. Methods Data were pooled from 5 published studies that measured energy intake rates across a total sample of 327 foods. Results We show that going from unprocessed, to processed, to UPFs that the average energy intake rate increases from 35.5 ± 4.4, to 53.7 ± 4.3, to 69.4 ± 3.1 kcal/min (P < 0.05). However, within each processing category there is wide variability in the energy intake rate. Conclusions We conclude that reported relations between UPF consumption and obesity should account for differences in energy intake rates when comparing unprocessed and ultra-processed diets. Future research requires well-controlled human feeding trials to establish the causal mechanisms for why certain UPFs can promote higher energy intake.

2020 ◽  
Author(s):  
Pey Sze Teo ◽  
Rob M van Dam ◽  
Clare Whitton ◽  
Linda Wei Lin Tan ◽  
Ciarán G Forde

ABSTRACT Background Both high energy density and fast eating rates contribute to excess energy intakes. The energy intake rate (EIR; kcal/min) combines both the energy density (kcal/g) and eating rate (g/min) of a food to quantify the typical rate at which calories of different foods are ingested. Objectives We describe the EIRs of diets in a multi-ethnic Asian population, and examine relationships between the consumption of high-EIR foods and total energy intake, body composition, and cardio-metabolic risk factors. Methods Diet and lifestyle data from the Singapore Multi-Ethnic Cohort 2 (n = 7011; 21–75 y), were collected through interviewer-administrated questionnaires. The EIR for each of the 269 foods was calculated as the product of its eating rate and energy density. Multivariable models were used to examine associations between the relative consumption of foods with higher and lower EIRs and energy intake, body composition, and cardio-metabolic risks, after adjusting for age, sex, ethnicity, education level, physical activity, smoking status, and alcohol drinking status. Results Individuals with higher daily energy intakes and with obesity consumed a significantly larger percentage of their energy from high-EIR foods, with a smaller relative intake of lower-EIR foods. Individuals with raised serum cholesterol also consumed a significantly higher proportion of high-EIR foods, whereas those without hypertension consumed a larger percentage of energy intake from low-EIR foods. Individuals classified as having a “very high” dietary EIR had a significantly 1.3 kg higher body weight (95% CI, 0.2–1.5; P = 0.013), 0.4 kg/m2 higher BMI (95% CI, 0.03–0.8; P = 0.037), and 1.2 cm larger waist circumference (95% CI, 0.2–2.2; P = 0.010), and were more likely to have abdominal overweight (OR, 1.3; 95% CI, 1.1–1.5; P < 0.001) than those with a “low” dietary EIR. Conclusions Comparing foods by their EIRs summarizes the combined impact of energy density and eating rate, and may identify foods and dietary patterns that are associated with obesogenic eating styles and higher diet-related cardiovascular disease risk in an Asian population.


2020 ◽  
Vol 124 (9) ◽  
pp. 988-997 ◽  
Author(s):  
Arianne van Eck ◽  
Anouk van Stratum ◽  
Dimitra Achlada ◽  
Benoît Goldschmidt ◽  
Elke Scholten ◽  
...  

AbstractFood and energy intake can be effectively lowered by changing food properties, but little is known whether modifying food shape is sufficient to influence intake. This study investigated the influence of cracker shape and cheese viscosity on ad libitum intake of cracker–cheese combinations. Forty-four participants (thirteen males, 23 (sd 3) years, BMI 21 (sd 2) kg/m2) participated in four late afternoon snack sessions (2 × 2 randomised crossover design). Iso-energetic crackers were baked into flat squares and finger-shape cylindrical sticks and combined with a cheese dip varying in viscosity. Approximately eighty crackers and 500 g cheese dip were served in separate large bowls. Participants consumed crackers with cheese dip ad libitum while watching a movie of 30 min. Dipping behaviour and oral processing behaviour were measured simultaneously by hidden balances under the cheese bowls and video recordings. Cracker intake (28 (sem 1) crackers) of cracker–cheese combinations was not influenced by cracker shape. Cheese intake of cracker–cheese combinations was 15 % higher for flat-squared than finger-shape crackers (131 kJ, P = 0·016), as a larger amount of cheese was scooped with flat-squared crackers (2·9 (sem 0·2) v. 2·3 (sem 0·1) g cheese per dip, P < 0·001) and showed higher eating rate and energy intake rate (P < 0·001). Eating rate over snacking time decreased by reducing bite frequency (P < 0·001) while cheese dip size remained fairly constant (P = 0·12). Larger energy intake from condiments was facilitated by increased cracker surface, and this did not trigger earlier satiation. Changing food carrier surface may be a promising approach to moderate energy intake of often high energy dense condiments, sauces and toppings.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3264
Author(s):  
Pey Sze Teo ◽  
Rob M. van Dam ◽  
Ciarán G. Forde

Eating more quickly and consuming foods with a higher energy-intake-rate (EIR: kcal/min) is associated with greater energy intake and adiposity. However, it remains unclear whether individuals who eat more quickly are more likely to consume foods with higher EIR. We investigated the overlap between self-reported eating rate (SRER) and the consumption of higher EIR foods, and their combined impact on daily energy intake and adiposity in a population-based Asian cohort (n = 7011; 21–75y). Food consumption was assessed using a validated Food Frequency Questionnaire. Moderated regression with simple slope analysis was conducted to evaluate whether SRER modified the association between dietary EIR and total dietary energy intakes. Faster eaters consumed a significantly higher proportion of energy from higher EIR foods among overweight individuals, but not among normal-weight individuals. Associations between dietary EIR and total energy intake were stronger among medium (β = 15.04, 95%CI: 13.00–17.08) and fast (β = 15.69, 95%CI: 12.61–18.78) eaters, compared with slower eaters (β = 9.89, 95%CI: 5.11–14.67; p-interaction = 0.032). Higher dietary EIR also tended to be more strongly associated with BMI in fast eaters (β = 0.025, 95%CI: 0.011–0.038) than in slow eaters (β = 0.017, 95%CI: −0.007–0.040). These findings suggest that the combination of eating more quickly and selecting a greater proportion of energy from higher EIR foods (i.e., softly textured, energy dense), promoted higher dietary energy intakes and adiposity.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 841-841
Author(s):  
Daniel Hoffman ◽  
Paula dos Leffa ◽  
Caroline Sangalli ◽  
Julia Valmórbida ◽  
André Dornelles ◽  
...  

Abstract Objectives Poor diet quality is a major risk factor for the development of anemia. An increased consumption of fortified ultra-processed food (UPF) among children presents a new contributor to micronutrient intake, one that could potentially improve anemia biomarkers despite having a concomitantly low diet quality. Our objective was to investigate the impact of fortified UPF consumption on the prevalence of anemia and diet quality among children from low-income families in Brazil. Methods A cross-sectional analyses from a randomized field trial of children at 3 years of age (n = 432) from Porto Alegre, Brazil. Capillary blood samples were taken to measure hemoglobin concentration (Hb) and used to determine anemia status. Dietary data was assessed using two multiple-pass 24-h recalls and the consumption of UPF was classified according to the NOVA system. Results UPF account for 42.6% of total energy intake. Children in the highest tertile of UPF consumption had significantly lower risk of anemia (Hb &lt; 110 g/L) compared to those in the lowest tertile (tertile 3 vs. tertile 1; OR 0.56 95% CI 0.39 to 0.82). Similarly, a 10% increase in the consumption of UPF was associated with a 22% lower risk of anemia (95% CI 0.64 to 0.94). Conversely, consumption of UPF was negatively associated with consumption of unprocessed/minimally processed foods. Finally, as the contribution of UPF to total energy intake increased, the intake of added sugars, total fats, and sodium increased, whereas the intake of proteins, fiber, and calcium decreased. Conclusions The consumption of fortified UPF was associated with a lower risk of anemia and a poor diet quality in children from a low-income community in Brazil. The co-existence of normal Hb with poor diet quality suggests the need for a more nuanced assessment of dietary patterns in low-income settings to best address this paradoxical situation as the prevalence of the double burden of disease continues to increase throughout the world. Funding Sources Coordination for the Improvement of Higher Education Personnel (CAPES).


1990 ◽  
Vol 47 (10) ◽  
pp. 2039-2048 ◽  
Author(s):  
Nicholas F. Hughes ◽  
Lawrence M. Dill

We develop a model to predict position choice of drift-feeding stream salmonids, assuming a fish chooses the position that maximizes its net energy intake rate. The fish's habitat is represented as a series of stream cross-profiles, each divided into vertical strips characterized by water depth and velocity. The fish may select a focal point in any of these strips, and include several neighbouring strips in its foraging area. The number of prey the fish encounters depends on its reaction distance to prey, water depth, and water velocity; the proportion of detected prey the fish is able to capture declines with water velocity. The fish's net energy intake rate is its gross energy intake rate from feeding minus the swimming cost calculated by using water velocity at the fish's focal point. There was a close match between the positions predicted by this model and those chosen by solitary Arctic grayling (Thymallus arcticus) in the pools of a mountain stream in Alaska.


Sign in / Sign up

Export Citation Format

Share Document