scholarly journals Impact Investigation of Stator Seal Leakage on Aerodynamic Performance of Multistage Compressor

2021 ◽  
Vol 9 ◽  
Author(s):  
Qi Wang ◽  
Zhou Zhang ◽  
Qingsong Hong ◽  
Lanxue Ren

In this paper, a numerical model based on the mass flow rate of seal leakage is presented, and a 3D numerical method of a multistage axial compressor with good engineering practicability is established. Validation consists of modeling a nine-stage axial compressor in all operating rotation speeds and calculating results of the performance characteristic curves in good agreement with test data. Comparisons are made against different cases of seal leakage mass flow rate for analyzing the impact of increasing seal leakage on the aerodynamic performance of the multistage axial compressor. The results indicate that the performance of the nine-stage axial compressor is degenerated faster and faster with seal leakage increasing in all operating working points, and the degeneration of performance of this compressor can be evaluated by the relationships of main performance parameters with the mass flow rate of seal leakage. Comparisons of flow distribution in the compressor for different cases of seal leakage also show that stators located in front stages of the multistage axial compressor are affected more seriously by the increasing seal leakage, and it can be confirmed that relatively larger flow losses in front stages bring significant impact on the decay of aerodynamic performance of a multistage axial compressor.

Author(s):  
Qi Wang ◽  
Lanxue Ren ◽  
Zhou Zhang ◽  
Ting Wang ◽  
Mingcong Luo

Abstract This paper presents a numerical model based on the mass flow rate of seal leakage. This numerical model is considered as a correct method for 3-D numerical simulation. It can be used to simulate the effect of seal leakage at the stator root of a multistage axial compressor. Implementation of the correct method is using a numerical model based on the flux conservation which can control the mass flow rate of seal leakage accurately at the seal cavity of compressor. The mass flow rate of seal leakage is chosen as the key research parameter on the aerodynamic performance effect of the seal engineering application in a multistage axial compressor. Combined with the 3-D numerical simulation methods, an engineering numerical approach is set up in this study. A nine-stage axial compressor is taken as the research object in this paper and its aerodynamic performance is tested for proving the applicability of the numerical model for seal leakage. In the cases of several operating rotation speeds, numerical results of the nine-stage axial compressor performance characteristic curves are in good agreement with the experimental data. It is considered that the numerical approach based on the simplified numerical model in this paper can predict the performance of multistage axial compressor accurately. Then, comparisons are made against different cases of seal leakage mass flow rate for analyzing the impact of seal leakage increasing on the aerodynamic performance of the nine-stage axial compressor. The main point of comparisons is focused on the changes of the overall performance and the flow distribution in the compressor with the seal leakage changing. The results indicate that performance of multistage axial compressor is degenerated faster and faster with seal leakage increasing in all operating working points. An overall decline is appeared in the flow capacity, working capacity, efficiency and surge margin of the compressor. For the impact investigation on the changes of flow distribution, the total pressure loss coefficient, the relative Mach number contours and the movement of streamlines are studied in different seal leakage cases under several operating working points. The result also shows that stators located in front stages of multistage axial compressor are affected more seriously with the increasing mass flow rate of seal leakage. Under the influence of seal leakage, degradation of flow condition in stators located in front stages is more severely than that in back stages, the total pressure loss coefficient and entropy are increased, and the flow separations at the root of stators in front stages are developed faster with seal leakage increasing. So it can be confirmed that relatively larger flow losses in front stages bring significant impact on the decay of aerodynamic performance for a multistage axial compressor.


Author(s):  
Pascal Nucara ◽  
Abdulnaser Sayma

Current gas turbine technology for power generation is generally optimised for natural gas. Recently the use of Low Calorific Value (LCV) fuels gained interest, particularly, Hydrogen rich syngas resulting from coal and solid waste gasification. When LCV fuels are used the performance and behaviour of the engines could significantly change and modifications may be needed. For instance, due to the relatively low heating value of the syngas, higher fuel mass flow rate is required compared to the natural gas combustion case. This leads to a decrease of demand for air from the compressor, which results in increased back pressure, reduction of stall margin and possible compressor instability. In a previous work an exploration of some compressor geometry modifications to allow for high fuel flexibility was conducted on a single axial compressor rotor. The investigation provided insights into the effect of blade shape modifications, such as stagger, lean and sweep on rotor performance. With the same purpose of identifying trends rather than producing optimum design, in this study the analysis is extended to a multistage axial compressor. Two different investigations have been performed, both having, as objective, the shifting of the original mass flow rate towards a lower value while maintaining high performance. In the first study the effect of IGV and stator vanes stagger variations only was considered while in a second approach the re-design of the original machine included modifies to rotor’s stagger angles. In order to understand the change in each single blade performance when modifying the original geometry, the variation of critical parameters such as blade loading and diffusion factor has been here considered in first analysis.


Author(s):  
Juan Du ◽  
Yiwen Li ◽  
Zhihui Li ◽  
Jichao Li ◽  
Zinan Wang ◽  
...  

Abstract A novel blowing flow control technique, called Coanda jet flap, to improve the performance of the highly loaded axial compressor is numerically and experimentally investigated in this study. A theoretical model is initially built to guide the preliminary design of the jet velocity. The design and effectiveness of the Coanda jet flap are then studied for two different blade designs: a highly-loaded double-arc blade cascade and a highly-loaded axial compressor stator. The optimal aerodynamic shape of the Coanda jet flap is achieved based on the genetic algorithm in conjunction with the artificial neural networks. A comparison of the flow details between the optimization result and the prototype is then conducted to understand the flow mechanisms responsible for the performance enhancement. The numerical and experimental results show that the Coanda jet effectively improves the aerodynamic performance of the highly loaded cascade. The total pressure loss is reduced by a maximum of 22.4% when the normalized mass flow rate of Coanda jet is equal to 1%. Meanwhile, the static pressure rise coefficient is increased by up to 14% with a 1.5% jet mass flow rate. The cantilevered stator vanes with Coanda jet flap is well-designed and embedded in a 1.5-stage highly loaded axial compressor stage. The numerical data shows that the total number of stator blades can be successfully reduced by 35% with the uncompromised overall performance when the Coanda jet flap is applied.


Author(s):  
Shaowen Chen ◽  
Chen Zhang ◽  
Hui Shi ◽  
Songtao Wang ◽  
Zhongqi Wang

Mechanistic research on the fouling of the compressor is necessary to delay the deterioration caused by fouling during long-term operation, and to explore methods that will lower compressor component deterioration, thereby improving the overall performance. The effects of fouling on the performance of an axial compressor stage were investigated numerically. As a representative of the realistic compressor stages, the NASA Stage 35 was considered to perform a numerical investigation by means of a commercial computational fluid dynamic code. The numerical model was validated by comparing with the experimental data available from literatures. The computed performance maps and exit parameter distributions showed a good agreement with experimental data. The model was then used to simulate the effect of fouling on compressor stage by various fouling configurations including added thickness and surface roughness levels. The mechanism of the compressor deterioration due to fouling was discussed in detail. As a result, despite the contribution of added thickness on the work capacity, it substantially narrowed the table operating ranges substantially, causing a greater effect on the overall compressor performance. The influence of roughness applied in the rotor is similar to that in the whole stage, including the drop in mass flow rate at choked and near stall point, pressure ratio, and efficiency, whereas, compressor performance slightly decreases in the stator. When the surface roughness is equal to 50 μm, the drop in mass flow rate under a low Reynolds number is less than that under normal conditions, with little influence on the stable operating range.


Author(s):  
Jinlan Gou ◽  
Wei Wang ◽  
Can Ma ◽  
Yong Li ◽  
Yuansheng Lin ◽  
...  

Using supercritical carbon dioxide (SCO2) as the working fluid of a closed Brayton cycle gas turbine is widely recognized nowadays, because of its compact layout and high efficiency for modest turbine inlet temperature. It is an attractive option for geothermal, nuclear and solar energy conversion. Compressor is one of the key components for the supercritical carbon dioxide Brayton cycle. With established or developing small power supercritical carbon dioxide test loop, centrifugal compressor with small mass flow rate is mainly investigated and manufactured in the literature; however, nuclear energy conversion contains more power, and axial compressor is preferred to provide SCO2 compression with larger mass flow rate which is less studied in the literature. The performance of the axial supercritical carbon dioxide compressor is investigated in the current work. An axial supercritical carbon dioxide compressor with mass flow rate of 1000kg/s is designed. The thermodynamic region of the carbon dioxide is slightly above the vapor-liquid critical point with inlet total temperature 310K and total pressure 9MPa. Numerical simulation is then conducted to assess this axial compressor with look-up table adopted to handle the nonlinear variation property of supercritical carbon dioxide near the critical point. The results show that the performance of the design point of the designed axial compressor matches the primary target. Small corner separation occurs near the hub, and the flow motion of the tip leakage fluid is similar with the well-studied air compressor. Violent property variation near the critical point creates troubles for convergence near the stall condition, and the stall mechanism predictions are more difficult for the axial supercritical carbon dioxide compressor.


Author(s):  
Byeung Jun Lim ◽  
Tae Choon Park ◽  
Young Seok Kang

In this study, characteristics of stall inception in a single-stage transonic axial compressor with circumferential grooves casing treatment were investigated experimentally. Additionally, the characteristic of increasing irregularity in the pressure inside circumferential grooves as the compressor approaches the stall limit was applied to the stall warning method. Spike-type rotating stall was observed in the single-stage transonic axial compressor with smooth casing. When circumferential grooves were applied, the stall inception was suppressed and the operating point of the compressor moved to lower flow rate than the stall limit. A spike-like disturbance was developed into a rotating stall cell and then the Helmholtz perturbation was overlapped on it at N = 80%. At N = 70 %, the Helmholtz perturbation was observed first and the amplitude of the wave gradually increased as mass flow rate decreased. At N = 60%, spike type stall inceptions were observed intermittently and then developed into continuous rotating stall at lower mass flow rate. Pressure measured at the bottom of circumferential grooves showed that the level of irregularity of pressure increased as flow rate decreased. Based on the characteristic of increasing irregularity of the pressure signals inside the circumferential grooves as stall approaches, an autocorrelation technique was applied to the stall warning. This technique could be used to provide warning against stall and estimate real-time stall margins in compressors with casing treatments.


Author(s):  
Yang Chen ◽  
Jun Li ◽  
Chaoyang Tian ◽  
Gangyun Zhong ◽  
Xiaoping Fan ◽  
...  

The aerodynamic performance of three-stage turbine with different types of leakage flows was experimentally and numerically studied in this paper. The leakage flows of three-stage turbine included the shroud seal leakage flow between the rotor blade tip and case, the diaphragm seal leakage flow between the stator blade diaphragm and shaft, as well as the shaft packing leakage flow and the gap leakage flow between the rotor blade curved fir-tree root and wheel disk. The total aerodynamic performance of three-stage turbine including leakage flows was firstly experimentally measured. The detailed flow field and aerodynamic performance were also numerically investigated using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) and S-A turbulence model. The numerical mass flow rate and efficiency showed well agreement with experimental data. The effects of leakage flows between the fir-tree root and the wheel disk were studied. All leakage mass flow fractions, including the mass flow rate in each hole for all sets of root gaps were given for comparison. The effect of leakage flow on the aerodynamic performance of three-stage was illustrated and discussed.


Author(s):  
Xingyun Jia ◽  
Liguo Wang ◽  
Qun Zheng ◽  
Hai Zhang ◽  
Yuting Jiang

Performance of generic rim seal configurations, axial-clearance rim seal (ACS), radial-clearance rim seal (RCS), radial-axial clearance rim seal (RACS) are compared under realistic working conditions. Conjugate heat transfer analysis on rim seal is performed in this paper to understand the impact of ingestion on disc temperature. Results show that seal effectiveness and cooling effectiveness of RACS are the best when compared with ACS and RCS, the minimum mass flow rate for seal of RACS is 75% of that of RCS, and 34.6% of ACS. Authors compare the disc temperature distribution between different generic rim seal configurations where the RACS seems to be favorable in terms of low disc temperature. In addition, RACS has higher air-cooled aerodynamic efficiency, minimizing the mainstream performance penalty when compared with ACS and RCS. Corresponding to the respective minimum mass flow rate for seal, the air-cooled aerodynamic efficiency of RACS is 23.71% higher than that of ACS, and 12.79% higher than the RCS.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Clifford K. Ho ◽  
Joshua M. Christian ◽  
Julius E. Yellowhair ◽  
Kenneth Armijo ◽  
William J. Kolb ◽  
...  

This paper evaluates the on-sun performance of a 1 MW falling particle receiver. Two particle receiver designs were investigated: obstructed flow particle receiver versus free-falling particle receiver. The intent of the tests was to investigate the impact of particle mass flow rate, irradiance, and particle temperature on the particle temperature rise and thermal efficiency of the receiver for each design. Results indicate that the obstructed flow design increased the residence time of the particles in the concentrated flux, thereby increasing the particle temperature and thermal efficiency for a given mass flow rate. The obstructions, a staggered array of chevron-shaped mesh structures, also provided more stability to the falling particles, which were prone to instabilities caused by convective currents in the free-fall design. Challenges encountered during the tests included nonuniform mass flow rates, wind impacts, and oxidation/deterioration of the mesh structures. Alternative materials, designs, and methods are presented to overcome these challenges.


2014 ◽  
Vol 30 (3) ◽  
pp. 307-313 ◽  
Author(s):  
R. Taghavi-Zenou ◽  
S. Abbasi ◽  
S. Eslami

ABSTRACTThis paper deals with tip leakage flow structure in subsonic axial compressor rotor blades row under different operating conditions. Analyses are based on flow simulation utilizing computational fluid dynamic technique. Three different circumstances at near stall condition are considered in this respect. Tip leakage flow frequency spectrum was studied through surveying instantaneous static pressure signals imposed on blades surfaces. Results at the highest flow rate, close to the stall condition, showed that the tip vortex flow fluctuates with a frequency close to the blade passing frequency. In addition, pressure signals remained unchanged with time. Moreover, equal pressure fluctuations at different passages guaranteed no peripheral disturbances. Tip leakage flow frequency decreased with reduction of the mass flow rate and its structure was changing with time. Spillage of the tip leakage flow from the blade leading edge occurred without any backflow in the trailing edge region. Consequently, various flow structures were observed within every passage between two adjacent blades. Further decrease in the mass flow rate provided conditions where the spilled flow ahead of the blade leading edge together with trailing edge backflow caused spike stall to occur. This latter phenomenon was accompanied by lower frequencies and higher amplitudes of the pressure signals. Further revolution of the rotor blade row caused the spike stall to eventuate to larger stall cells, which may be led to fully developed rotating stall.


Sign in / Sign up

Export Citation Format

Share Document